K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

Lời giải:

a)

\(f\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3x.\frac{1}{x}\left(x+\frac{1}{x}\right)\)

\(=\left(x+\frac{1}{x}\right)^3+3\left(x+\frac{1}{x}\right)\) với mọi $x\neq 0$

$\Rightarrow f(x)=x^3+3x$

b)

$2f(x)+f(\frac{1}{x})=\frac{4x^2+3}{x}(1)$

Cho $x\to \frac{1}{x}$ thì:

$2f(\frac{1}{x})+f(x)=\frac{4}{x}+3x(2)$

Lấy $2.(1)-(2)$ suy ra: $3f(x)=5x+\frac{2}{x}$

$\Rightarrow f(x)=\frac{5}{3}x+\frac{2}{3x}$ với mọi $x\neq 0$

20 tháng 12 2020

giúp mik với đi ạ mik thực sự đang cần gấp

3 tháng 9 2019

em chưa học đến :)

3 tháng 9 2019

ok em

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{12}{x-1}-\frac{20}{y+4}=16\\ \frac{12}{x-1}-\frac{3}{y+1}=\frac{57}{5}\end{matrix}\right.\)

\(\Rightarrow \frac{-20}{y+4}+\frac{3}{y+1}=\frac{23}{5}\)

\(\Leftrightarrow \frac{3(y+4)-20(y+1)}{(y+1)(y+4)}=\frac{23}{5}\)

\(\Leftrightarrow \frac{-8-17y}{(y+1)(y+4)}=\frac{23}{5}\)

\(\Rightarrow 23(y+1)(y+4)+5(17y+8)=0\)

\(\Leftrightarrow 23y^2+250y+132=0\)

\(\Rightarrow y=\frac{-125\pm \sqrt{12589}}{23}\). Thay vào tìm $x$

P/s: Có vẻ bạn viết sai đề, chứ số quá xấu.

Đây là đề bài: Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều! Có \(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\) Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow...
Đọc tiếp

Đây là đề bài:Bài tập Toán

Kiểm tra hộ mik lời giải, nếu có cách khác các bn góp ý cho mik nha, thnks nhiều!

\(P=\dfrac{2}{x^2+y^2}+\dfrac{35}{xy}+2xy\\ \Leftrightarrow P=\left(\dfrac{2}{x^2+y^2}+\dfrac{1}{xy}\right)+\dfrac{2}{xy}+\left(\dfrac{32}{xy}+2xy\right)\)

Xét nhóm 1: Áp dụng BĐT\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\left(1\right)\ge2\left(\dfrac{4}{\left(x+y\right)^2}\right)\ge2\left(\dfrac{4}{4^2}\right)=\dfrac{1}{2}\Rightarrow Min\left(1\right)=\dfrac{1}{2}\Leftrightarrow x=y\\\)

Xét nhóm 2: Vì \(x+y\le4\Rightarrow2\sqrt{xy}\le4\Rightarrow xy\le4\Rightarrow\dfrac{1}{xy}\ge\dfrac{1}{4}\Rightarrow Min\left(2\right)=\dfrac{1}{2}\Leftrightarrow xy=4\\ \)

Xét nhóm 3:Áp dụng BĐT Cô-si ta được:\(\dfrac{32}{xy}+2xy\ge2\sqrt{\dfrac{32}{xy}\cdot2xy}=16\Rightarrow Min\left(3\right)=16\Leftrightarrow x=y\\ \)

Từ các NX trên\(\Rightarrow MinP=\dfrac{1}{2}+\dfrac{1}{2}+16=17\left(ĐK:\right)x=y;xy=4hayx=y=2\)

0
17 tháng 8 2017

b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)

\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)

Bình phương 2 vế rút gọn

\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)

Đặt \(\sqrt{x^4-x^2}=a\)

\(\Rightarrow a^2-4\sqrt{3}a+12=0\)

\(\Leftrightarrow a=2\sqrt{3}\)

\(\Leftrightarrow x^4-x^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

17 tháng 8 2017

Câu a xem lại đề đúng không b. Do nghiệm xấu lắm

a: TH1: x>=2

=>2x-4<=x+12

=>x<=16

=>2<=x<=16

TH2: x<2

=>4-2x<=x+12

=>-3x<=8

=>x>=-8/3

=>-8/3<=x<2

b: TH1: x>=1

BPT sẽ là \(\dfrac{x-1}{x+2}< 1\)

=>(x-1-x-2)/(x+2)<0

=>x+2<0

=>x<-2(loại)

TH2: x<1

BPT sẽ là \(\dfrac{1-x}{x+2}-1< 0\)

=>(1-x-x-2)/(x+2)<0

=>(-2x-1)/(x+2)<0

=>(2x+1)/(x+2)>0

=>x>-1/2 hoặc x<-2

=>-1/2<x<1 hoặc x<-2