Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
Ta có:2n(2m-n-1)=64.31
=>2n=64
=>2n=26=> n=6
n=6 ta có:2m-n-1=31
=> 2m-n=32=> 2m-6=25
=> m-6=5=> m=6+5=11
vậy m=11 , n=6
#hoctot#
\(2^m+2^n=2^{m+n}\Rightarrow\frac{2^m+2^n}{2^m.2^n}=1\Leftrightarrow\frac{1}{2^m}+\frac{1}{2^n}=1\)
Nếu m=0 thì \(\frac{1}{2^m}+\frac{1}{2^n}=\frac{1}{2^0}+\frac{1}{2^n}>1\)
Nếu m=1 thì \(\frac{1}{2^m}+\frac{1}{2^n}=\frac{1}{2}+\frac{1}{2^n}=1\Rightarrow n=1\)
Nếu m>1 thì \(\frac{1}{2^m}< \frac{1}{2}\Rightarrow\frac{1}{2^n}>\frac{1}{2}\Rightarrow n=0\Rightarrow\frac{1}{2^m}+1=1\left(wrong\right)\)
Vậy m=1;n=0 và n=1;m=0
Ta có M = 1 + 2 + ..........+ 2^49
2M = 2 + 2^2 +.........+ 2^50
2M - M = (2 +2^2+.............+2^50) -(1 +2+.............+ 2^49)
M = 2^50 - 1
Mà M +1 = 2^n
<=> (2^50-1) +1 = 2^n
<=> 2^50 = 2^n
=> n = 50
Chúc bạn học tốt
Đặt m=n+q(q€N)
=> 2n+q - 2n = 2016 => 2n(2q - 1) = 2016 = 25 x 63. Vì 2q - 1 không chia hết cho 2 nên 2n = 25 và 2q = 64 = 26 => n = 5 và m= 6+5=11
Ta có : 2016 > 0 mà 2m - 2n = 2016 => 2m > 2n => m > n
=> m = n + x ( x thuộc N)
Thay vào đề ta có :
2n+x - 2n = 2016
2n . 2x - 2n . 1 = 2016
2n( 2x - 1) = 2016
2n( 2x -1) = 25 . 32 . 7
=> 2n = 25 và 2x -1 = 32 . 7
=> n = 5 và 2x - 1 = 63 => 2x = 64 => x = 6
KL :......