Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)
\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)
\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}
\(\frac{1}{9+x}-\frac{1}{x}=\frac{1}{5}+\frac{1}{4}\)
\(\frac{1}{9+x}-\frac{1}{x}=\frac{9}{20}\)
\(\frac{1}{x}+\frac{1}{9}-\frac{1}{x}=\frac{9}{20}\)
\(0=\frac{9}{20}-\frac{1}{9}\)
Pt vô nghiệm :)
đổi x= 38/5 ; y = 12/5
B= x(x+y) -7(x+y) = (x+y)(x-7)
B= (38/5 + 12/5)( 38/5-7)= 10.3/5 = 6
mới mở máy thấy làm liền đó
a: ĐKXĐ: \(x\notin\left\{1;-1;0\right\}\)
b: \(A=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{5\left(x-1\right)}{2x}=\dfrac{20\left(x-1\right)}{2x}=\dfrac{10\left(x-1\right)}{x}\)
c: Khi x=3,5 thì \(A=\dfrac{10\cdot2.5}{3.5}=\dfrac{25}{3.5}=\dfrac{50}{7}\)
d: Để A=4 thì 10x-10=4x
=>6x=10
=>x=5/3
cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath
a, =(x+2)*(y+2*x)
= (88+2)(y+2.-76)
= 90*y-6660
b, = (x-7)*(y+x)
\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)
= 3/5 . 10
=6
k cho tớ nha :))))))
ĐK: \(x\ne1;x\ne-1\)
\(Q=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\right)\left(x-1\right)\left(x+1\right)\)
\(Q=\left(\dfrac{x-1}{x+1}-\dfrac{1}{x+1}+\dfrac{x+1}{x-1}\right)\left(x-1\right)\left(x+1\right)\)
\(Q=\left(x-1\right)^2-\left(x-1\right)+\left(x+1\right)^2\)
\(Q=x^2-2x+1-x+1+x^2+2x+1=2x^2-x+3\)
c/ \(Q=2\left(x^2-\dfrac{1}{2}x\right)+3=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)-\dfrac{1}{8}+3\)
\(Q=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}\)
\(\Rightarrow Q_{min}=\dfrac{23}{8}\) khi \(x=\dfrac{1}{4}\)
a: Thay x=-3 vào B, ta được:
\(B=\dfrac{2\cdot\left(-3\right)^2}{3\cdot\left(-3\right)+6}=\dfrac{2\cdot9}{-9+6}=\dfrac{18}{-3}=-6\)
b: \(A=\dfrac{2x^2+20+3x-6-7x-14}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x}{x+2}\)
a) \(3\left(4x-1\right)-2x\left(5x+2\right)>8x-2\)
\(\Leftrightarrow12x-3-10x^2-4x>8x-2\)
\(\Leftrightarrow-10x^2>5\)
\(\Leftrightarrow x^2< \dfrac{-1}{2}\)(vô lí)
Vậy bất phương trình đã cho vô nghiệm.
h)
\(\dfrac{x+5}{x+7}-1>0\)
\(\Leftrightarrow\dfrac{x+5}{x+7}-\dfrac{x+7}{x+7}>0\)
\(\Leftrightarrow\dfrac{x+5-x-7}{x+7}>0\)
\(\Leftrightarrow\dfrac{-2}{x+7}>0\)
\(\Leftrightarrow x+7< 0\)
\(\Leftrightarrow x< -7\)
g)
\(\dfrac{4-x}{3x+5}\ge0\)
* TH1:
\(4-x\ge0\) và \(3x+5>0\)
\(\Leftrightarrow x\le4\) và \(x>\dfrac{-5}{3}\)
* TH2:
\(4-x\le0\) và \(3x+5< 0\)
\(\Leftrightarrow x\ge4\) và \(x< \dfrac{-5}{3}\) ( loại)
Vậy: \(-\dfrac{5}{3}< x\le4\)
Hướng làm:
Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức
\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)
\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)
\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)
\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)
\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)
\(< =>x+2021=0< =>x=-2021\)
Vậy....