Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B D C H E K I
Trong tia đối của tia HB và ED lấy điểm K và I sao cho : \(HK=EI\)
Theo tính chất cạnh đối diện với góc , chứng minh được \(KE< KC\)
Ta dễ dàng chứng minh được \(\Delta KHE=\Delta IEH\)(c-g-c)
Suy ra \(KE=IH\)\(< =>IH< KC\)
Đến đây mình chịu rồi
VÌ CẬU NÓI CÂU a) VÀ CÂU b) cậu làm đc r nên mk sẽ k giải phần đấy. Mk sẽ giải nguyên phần c) thôi
Làm
Từ E kẻ EK vuông góc với BC tại K
vì DH vuông góc với AC
ED vuông góc AE hay ED vuông góc với AC=> BH // ED
=> góc HBE = BED ( so le trong ) (1)
mặt khác BD = DE theo câu a
=> tam giác BDE cân tại D => góc EBD = BED (2)
Từ 1 , 2 suy ra góc HBE = EBK
Xét 2 TG vuông BHE và BKE có
HE là cạnh chung
góc HBE = EBK (theo cmt )
Do đó : tam giác BHE = BKE ( ch_gnh )
=> EH = EK
Trong tam giác EKC có EC là cạnh huyền
=> EC > EK => EC > EH
HỌC TỐT Ạ
B A C D K H I
a ) Xét \(\Delta AHB\) vuông tại H ta có :
\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )
\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)
Vậy \(\widehat{HAB}=60^o\)
b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :
AH = AD (gt)
IH=ID (gt)
AI cạnh chung
\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)
Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )
Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )
\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)
Do đó \(AI\perp HD\left(đpcm\right)\)
c ) Vì \(\Delta AHI=ADI\) ( cm câu b )
\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )
Xét \(\Delta AHK\) và \(\Delta ADK\) có ;
AH = AD (gt)
\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)
AK cạn chung
\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )
\(\Rightarrow AD\perp AC\)
Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)
AD//AB ( đpcm)
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
Do dó: ΔBAH=ΔBDH
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BH là phân giác của góc ABD
b: Xét ΔAHI vuông tại A và ΔDHC vuông tại D có
HA=HD
\(\widehat{AHI}=\widehat{DHC}\)
Do đó: ΔAHI=ΔDHC
Suy ra: HI=HC
hay H nằm trên đường trung trực của CI(1)
Ta có: BI=BC
nên B nằm trên đường trung trực của CI(2)
Ta có: MI=MC
nên M nằm trên đường trung trực của CI(3)
Từ (1), (2) và (3) suy ra B,H,M thẳng hàng
c: IH>HD
IB>BH
Do đó: IH+IB>HD+BH