K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

5 tháng 3 2021

undefined

undefined

chữ đẹp quá trời lun

5 tháng 3 2023

ê

28 tháng 2 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

 

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

BM=CM(M là trung điểm của BC)

\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng)

Xét ΔEMF có ME=MF(cmt)

nên ΔEMF cân tại M(Định nghĩa tam giác cân)

xin gửi cho ng ae https://books.google.com.vn/books?id=owlmDwAAQBAJ&pg=PA58&lpg=PA58&dq=B%C3%A0i+to%C3%A1n+2:+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A,+g%E1%BB%8Di+M+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+BC+1,+Ch%E1%BB%A9ng+minh+AM+vu%C3%B4ng+g%C3%B3c+v+%E1%BB%9Bi+BC+AM+l%C3%A0+ph%C3%A2n+gi%C3%A1c+G%C3%B3c+BAC+2,+cho+BC+%3D6+cm,+AB+%3D10cm.+T%C3%ADnh+chu+vi+tam+gi%C3%A1c+ABM&source=bl&ots=PtijT9btGV&sig=ACfU3U1yMN80kRhao_IWaDOriwmgMEhUjQ&hl=vi&sa=X&ved=2ahUKEwi_lcqqqOrnAhXhwzgGHeABBkgQ6AEwAHoECAgQAQ#v=onepage&q=B%C3%A0i%20to%C3%A1n%202%3A%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%2C%20g%E1%BB%8Di%20M%20l%C3%A0%20trung%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BC%201%2C%20Ch%E1%BB%A9ng%20minh%20AM%20vu%C3%B4ng%20g%C3%B3c%20v%20%E1%BB%9Bi%20BC%20AM%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20G%C3%B3c%20BAC%202%2C%20cho%20BC%20%3D6%20cm%2C%20AB%20%3D10cm.%20T%C3%ADnh%20chu%20vi%20tam%20gi%C3%A1c%20ABM&f=false tại vì ngu toán hình nên dùng mạng giải cho ! xl ng ae !

5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)