K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

mọi người ơi giúp em vs ạ , e đang rất cần 

 

23 tháng 3 2022

\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)

\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)

\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)

\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)

\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)

\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)

\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)

 

19 tháng 3 2022

i giúp em vớiiiiii

 

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)

\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)

\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)

\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)

\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)

mà \(3< \dfrac{10}{3}\)

nên \(M< \dfrac{10}{3}\)

5 tháng 7 2017

ai giúp mình với nhanh lên các bạn

5 tháng 7 2017

a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)

* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)

b) Không hiểu đề :v

c) \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{5}{3}\)

e) \(\left(4-2x\right)\left(5x+3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

Loại TH1, nhận TH2

Vậy \(-\dfrac{3}{5}< x< 2\)

g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)

* Nếu x < \(\dfrac{-1}{3}\)

PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)

0x - 2 = 0

0x = 2 \(\Rightarrow\) PT vô nghiệm

* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1-1+3x=0\)

6x = 0

x = 0 (t/m)

* Nếu x > \(\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1+1-3x=0\)

0x + 2 = 0

0x = -2

PT vô nghiệm.

Vậy x = 0

5 tháng 7 2017

a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)

\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)

\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)

+) Xét \(x\ge\dfrac{5}{4}\) có:

\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )

+) Xét \(x< \dfrac{5}{4}\) có:

\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )

Vậy...

b, tương tự

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy...

d, \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )

Vậy \(0< x< \dfrac{3}{5}\)

e, tương tự

g, \(\left|3x+1\right|+\left|1-3x\right|=0\)

\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)

+) Xét \(x\ge\dfrac{1}{3}\) có:

\(3x+1+3x-1=0\)

\(\Rightarrow6x=0\)

\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:

\(3x+1+1-3x=0\)

\(\Rightarrow2=0\) ( vô lí )

+) Xét \(x< \dfrac{-1}{3}\) có:

\(-3x-1+1-3x=0\)

\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )

Vậy ko có giá trị x thỏa mãn đề bài

1 tháng 8 2020

\(\left[1-\left(\frac{3}{4}-\frac{2}{3}\right)\right]-\left[1-\left(\frac{5}{3}-\frac{1}{4}\right)\right]-\left[1-\left(\frac{4}{3}+\frac{3}{4}\right)\right]\)

\(=\left(1-\frac{1}{12}\right)-\left(1-\frac{17}{12}\right)-\left(1-\frac{25}{12}\right)\)

\(=\frac{11}{12}+\frac{5}{12}+\frac{13}{12}\)

\(=\frac{29}{12}\)

1 tháng 8 2020

Đức : không có gì :)