Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (với \(\left|a\right|\ge2\))
Phương trình trở thành:
\(a^2-2-2ma+2m+1=0\Leftrightarrow a^2-2ma+2m-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)-2m\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=2m-1\end{matrix}\right.\)
Để pt có nghiệm \(\Leftrightarrow\left[{}\begin{matrix}2m-1\ge2\\2m-1\le-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\ge\frac{3}{2}\\m\le-\frac{1}{2}\end{matrix}\right.\)
a) Giá trị của biểu thức A tại x=-1 và y=-1 là:
A=5x3y2=5.(-1)3.(-1)2=5.(-1).1=-5
b) Giá trị của biểu thức B tại x=-3 và y=-1 là:
B=5xy4=5.(-3).(-1)4=-15
c) Giá trị của biểu thức C tại x=5 và y=-2 là:
\(C=\frac{4}{5}xy^3=\frac{4}{5}.5.\left(-2\right)^3=4.\left(-8\right)=-32\)
d) Giá trị của biểu thức D tại x=2 và y=\(\frac{1}{3}\) là:
\(D=\frac{3}{4}x^2y^3=\frac{3}{4}.2^2.\left(\frac{1}{3}\right)^3=3.\frac{1}{27}=\frac{1}{9}\)
e) Giá trị của biểu thức E tại x=\(\frac{1}{2}\) và y=5 là:
\(E=\frac{2}{5}x^2y=\frac{2}{5}.\left(\frac{1}{2}\right)^2.5=2.\frac{1}{4}=\frac{1}{2}\)
1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)
Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Chọn D. \(P\le\frac{1}{2}\)
2. a) Áp dụng BĐT Bunhiacopxki, ta có
\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)
\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)
Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)
a/ \(\Leftrightarrow m^2x-m^2-x-m+2=0\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2+m-2\)
Xét khi \(m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0x=1+1-2=0\\0x=1-1-2=-2\left(l\right)\end{matrix}\right.\)
Vậy vs m= 1 pt vô số nghiệm (x>0)
Xét khi \(m^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow x=\frac{m^2+m-2}{m^2-1}\)
Có \(x>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)>0\\\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)< 0\\\left(m-1\right)\left(m+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
b/ \(\Leftrightarrow mx-m-x+1+m-2=0\)
\(\Leftrightarrow\left(m-1\right)x=1\)
Vs \(m\ne1\)
\(\Rightarrow x=\frac{1}{m-1}\)
Có \(x\ge3\Rightarrow\frac{1}{m-1}\ge3\Leftrightarrow1\ge3m-3\Leftrightarrow m\le\frac{4}{3}\)
Xét \(m=1\Rightarrow0x=1\left(l\right)\)
Vậy vs \(m\le\frac{4}{3}\) thì pt có nghiệm vs x\(\ge3\)
c/ ĐKXĐ: \(9-x^2>0\Leftrightarrow\left(3-x\right)\left(3+x\right)>0\Leftrightarrow-3< x< 3\)
hmm, xem lại hộ cái đề boài nhoa, vế phải trên tử có dấu bằng là sao nhể? =))
https://h7.net/hoi-dap/toan-10/giai-phuong-trinh-1-2-3-can-x-x-2-can-x-can-1-x--faq242766.html
Xem ở link này nhé(mik gửi cho)
Học tốt!!!!!!!!!!!