Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)
\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)
\(< =>B=\frac{3x-4}{2x^2-4}\)
\(b,\)Với \(x=-2\)thì
\(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)
\(ĐKXĐ:x\ne2;x\ne0\)
a
\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)
\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)
b
\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)
c
\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)
\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)
\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)
Xét các trường hợp của x thì ra nghiệm bạn nhé
d
\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)
Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất
Casio sẽ giúp chúng ta phần này
e
Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)
g
\(\left|B\right|+3< 2x-1\)
Làm hệt như câu c nhé :D
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a) M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2)
= 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)
= 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4
= -22x - 55 = -11(2x + 5)
b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)
b) M = -11(2x + 5) = 0
\(\Rightarrow\)2x + 5 = 0
\(\Rightarrow\)x = \(\frac{-5}{2}\)
Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)
b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)
\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)
c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)
Vậy \(x=\frac{-5}{2}\)
a)ĐKXĐ: x\(\ne\)1;x\(\ne\)-1
B=\(\frac{1}{4x-4}\)
b)
B=\(\frac{1}{8016}\)
c)
x=\(\frac{4007}{4008}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)
\(\Leftrightarrow Q=\frac{x+1}{2x}\)
b) Để \(Q\inℤ\)
\(\Leftrightarrow x+1⋮2x\)
\(\Leftrightarrow2\left(x+1\right)⋮2x\)
\(\Leftrightarrow2x+2⋮2x\)
\(\Leftrightarrow2⋮2x\)
\(\Leftrightarrow2x\inƯ\left(2\right)\)
\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)
Mà \(x\inℤ\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)
a) Phân thức M xác định khi và chỉ khi :
+) \(2x-2\ne0\Leftrightarrow x\ne1\)
+) \(2x+2\ne0\Leftrightarrow x\ne-1\)
+) \(1-\frac{x-3}{x+1}\ne0\)
\(\Leftrightarrow x-3\ne x+1\)
\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)
Vậy \(x\ne\left\{1;-1\right\}\)
b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)
\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)
\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)
\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)
\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)
\(M=\frac{1}{x-1}\)
\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)