Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(x\ge0\)
Ta có:
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên
Ta có: \(A=\frac{2\sqrt{x}+10}{\sqrt{x}-3}=\frac{\left(2\sqrt{x}-6\right)+16}{\sqrt{x}-3}=2+\frac{16}{\sqrt{x}-3}\)
Để A nguyên => \(\frac{16}{\sqrt{x}-3}\inℤ\Rightarrow\sqrt{x}-3\inƯ\left(16\right)\)
Mà \(\sqrt{x}-3\ge-3\left(\forall x\right)\Rightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4;8;16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7;12;20\right\}\)
\(\Rightarrow x\in\left\{1;4;16;25;49;144;400\right\}\)
b) đk: \(x\ge0\)
Ta có:
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên
Ta có: \(B=\frac{\sqrt{x}+8}{2\sqrt{x}+1}\Rightarrow2B=\frac{2\sqrt{x}+16}{2\sqrt{x}+1}=1+\frac{15}{2\sqrt{x}+1}\)
Để 2B nguyên => \(\frac{15}{2\sqrt{x}+1}\inℤ\Rightarrow2\sqrt{x}+1\inƯ\left(15\right)\)
Mà 1 lẻ nên để B nguyên => \(\frac{15}{2\sqrt{x}+1}\) lẻ, mặt khác: \(2\sqrt{x}+1\ge1\left(\forall x\right)\)
=> \(2\sqrt{x}+1\in\left\{1;3;5;15\right\}\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;14\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;2;7\right\}\Rightarrow x\in\left\{0;1;4;49\right\}\)
ĐKXĐ : x > 0 ; x ≠ 1 ; x ≠ 4
a) \(A=\left(1-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x-1}}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) Với x = \(11-6\sqrt{2}\)
\(A=\frac{\sqrt{11-6\sqrt{2}}-3}{\sqrt{11-6\sqrt{2}}-2}\)
\(=\frac{\sqrt{2-6\sqrt{2}+9}-3}{\sqrt{2-6\sqrt{2}+9}-2}\)
\(=\frac{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-3}{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-2}\)
\(=\frac{\sqrt{\left(\sqrt{2}-3\right)^2}-3}{\sqrt{\left(\sqrt{2}-3\right)^2}-2}\)
\(=\frac{\left|\sqrt{2}-3\right|-3}{\left|\sqrt{2}-3\right|-2}\)
\(=\frac{3-\sqrt{2}-3}{3-\sqrt{2}-2}=\frac{-\sqrt{2}}{1-\sqrt{2}}\)
c) Ta có : \(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}=\frac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\frac{1}{\sqrt{x}-2}\)
Để A nguyên => \(\frac{1}{\sqrt{x}-2}\)nguyên
=> \(1⋮\sqrt{x}-2\)
=> \(\sqrt{x}-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> \(\sqrt{x}\in\left\{3;1\right\}\)
=> \(x=9\)( không nhận x = 1 do ĐKXĐ )
d) Để A = -2
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}=-2\)( x > 0 ; x ≠ 1 ; x ≠ 4 )
=> \(\sqrt{x}-3=-2\sqrt{x}+4\)
=> \(\sqrt{x}+2\sqrt{x}=4+3\)
=> \(3\sqrt{x}=7\)
=> \(9x=49\)( bình phương hai vế )
=> \(x=\frac{49}{9}\)( tm )
e) Để A có giá trị âm
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x< 4\end{cases}}\)( loại )
2. \(\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x>4\end{cases}}\Leftrightarrow4< x< 9\)
Vậy với 4 < x < 9 thì A có giá trị âm
f) Để A < -2
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< -2\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+2< 0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}-4}{\sqrt{x-2}}< 0\)
=> \(\frac{3\sqrt{x}-7}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3\sqrt{x}-7< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}< 7\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x< 49\\x>4\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{49}{9}\\x>4\end{cases}}\Leftrightarrow4< x< \frac{49}{9}\)
2. \(\hept{\begin{cases}3\sqrt{x}-7>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}>7\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x>49\\x< 4\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{49}{9}\\x< 4\end{cases}}\)( loại )
Vậy với 4 < x < 49/9 thì A < -2
g) Để \(A>\sqrt{x}-1\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\left(\sqrt{x}-1\right)>0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{x-3\sqrt{x}+2}{\sqrt{x}-2}>0\)
=> \(\frac{-x+4\sqrt{x}-5}{\sqrt{x}-2}>0\)
Ta có : \(-x+4\sqrt{x}-5=-\left(x-4\sqrt{x}+4\right)-1=-\left(\sqrt{x}-2\right)^2-1\le-1< 0\left(\forall\ge0\right)\)
Nên để A > 0 thì ta chỉ cần xét \(\sqrt{x}-2< 0\)
\(\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ => \(\hept{\begin{cases}0< x< 4\\x\ne1\end{cases}}\)thì tm
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)- \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)( \(x\ge0\); \(x\ne2;3\))
= \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)= \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)= \(1+\frac{4}{\sqrt{x}-3}\)
để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)
ta có bảng sau
\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1 (L)
x 16 4 25 1 49
vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }
#mã mã#
\(2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
để 2M có giá trị nguyên thì \(2\sqrt{x}+2⋮\sqrt{x}+2\)(1)
Lại có \(2\sqrt{x}+4⋮\sqrt{x}+2\)(2)
\(\Rightarrow2⋮\sqrt{x}+2\)(lấy (2) trừ (1))
mà \(\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\) ( vì x thuộc Z)
=> x=0
Ta có: \(M=\frac{\sqrt{x}+1}{\sqrt{x}+2}\) ( ĐK: \(x\ge0\) )
\(\Leftrightarrow2M=\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+4-2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+4}{\sqrt{x}+2}-\frac{2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=2-\frac{2}{\sqrt{x}+2}\)
Để 2M có giá trị nguyên <=> \(2⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(2\right)\)
\(\Leftrightarrow\sqrt{x}+2\in\left\{-1;-2;1;2\right\}\)
Vì \(x\ge0\Leftrightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\)
\(\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy khi x = 0 thì 2M có giá trị nguyên!
Chúc bạn học tốt! :))