Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath:bạn tham khảo.
\(P\left(-1\right)\cdot P\left(3\right)\)
\(=\left[a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c\right]\cdot\left(a\cdot3^2+b\cdot3+c\right)\)
\(=\left(-a-b+c\right)\left(9a+3b+c\right)\)(*)
Ta có : \(2a+b=0\Leftrightarrow2a=-b\)
Khi đó : \(3b=\left(-3\right)\left(-b\right)=-3\cdot2a=-6a\)
(*) \(\Leftrightarrow\left(-a+2a+c\right)\left(9a-6a+c\right)\)
\(=\left(a+c\right)\left(3a+c\right)\)
Đến đây thì chịu :) Em cho thiếu đề hay sao ý
Ta có: \(f\left(1\right)=a+b+c=\left(a+c\right)+b=2^{2006}+2^{2007}\)
\(f\left(-1\right)=a-b+c=\left(a+c\right)-b=2^{2006}-2^{2007}\)
\(A=f\left(1\right)+f\left(-1\right)=\left(2^{2006}+2^{2007}\right)+\left(2^{2006}-2^{2007}\right)=2.2^{2006}=2^{2007}\)
\(B=f\left(1\right)-f\left(-1\right)=\left(2^{2006}+2^{2007}\right)-\left(2^{2006}-2^{2007}\right)=2.2^{2007}=2^{2008}\)
\(f\left(-1\right)=-a+b-c+d=2\)
\(f\left(0\right)=d=1\)
\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)
\(f\left(1\right)=a+b+c+d=7\)
Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)
a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)
b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\); \(\left|y+4\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5
a)\(\left|5x-4\right|=\left|x+2\right|\Leftrightarrow\) \(\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\) \(\Leftrightarrow\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}\Leftrightarrow\)\(\begin{cases}4x=6\\6x=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}\)
b)\(\left|7x+1\right|-\left|5x+6\right|=0\Leftrightarrow\left|7x+1\right|=\left|5x+6\right|\Leftrightarrow\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}\Leftrightarrow\begin{cases}7x-5x=-1+6\\7x+5x=-1-6\end{cases}\Leftrightarrow\begin{cases}2x=5\\12x=-7\end{cases}\Leftrightarrow\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}\)
c) Tương tự
Cứ áp dụng \(\left|A\left(x\right)\right|=\left|B\left(x\right)\right|\)\(\Leftrightarrow\)\(A\left(x\right)=B\left(x\right)\) hoặc \(A\left(x\right)=-B\left(x\right)\) là đc mà
VD câu a) nè \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}}\)
Tương tự ....
Chúc bạn học tốt ~
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
Ai lại ko biết dấu chấm là dấu nhân