\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

Với x >= 0 ; x khác 1 

\(P=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}+1}{x-1}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}}=\frac{x\sqrt{x}-\sqrt{x}}{x}\)

6 tháng 9 2017

\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)

\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\frac{x}{x-1}\)

\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\frac{x}{x-1}\)

\(=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}\)

Nếu  \(x\ge2\) thì 

\(Q=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x\sqrt{x-1}}{\left(x-2\right)\left(x-1\right)}=\frac{2x}{\left(x-2\right)\left(\sqrt{x-1}\right)}\)

Nếu \(x< 2\) thì \(Q=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x}{\left(x-2\right)\left(x-1\right)}\)

6 tháng 9 2017

Cảm ơn bạn nhiều nhưng mình thấy \(1-\frac{1}{x-1}=\frac{x-2}{x-1}\)  mà bạn sao lại bằng \(\frac{x}{x-1}\)được 

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

26 tháng 3 2022

b, Ta có \(P=\frac{x\sqrt{x}-\sqrt{x}}{x}=\frac{x-1}{\sqrt{x}}>0\)

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x-1>0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x>1\\x\ne0\end{cases}}\)

25 tháng 3 2022

với x>hoặc =0;x khác 1 nha

16 tháng 7 2021

\(ĐKXĐ:x\ge0;x\ne\frac{1}{9}\)

\(\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(\left(\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(\frac{3x-3\sqrt{x}+\sqrt{x}-1+5\sqrt{x}+1}{9x-1}.\frac{3\sqrt{x}+1}{3}\)

\(\frac{3x+3\sqrt{x}}{9x-1}.\frac{3\sqrt{x}+1}{3}\)

\(\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)