Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !
a) ĐKXĐ: x khác +-1
b) \(\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{x^2-1}\)
\(=\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2+\left(x-2\right)\left(x-1\right)-\left(2x^2+x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-\frac{2}{x-1}\)
a, ĐKXĐ của B: \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
b, \(B=\frac{\left(x^2+2x\right)x+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
\(B=0\Rightarrow\frac{x-1}{2}=0\Rightarrow x-1=0\Rightarrow x=1\)(thỏa mãn điều kiện xác định)
\(B=\frac{1}{4}\Rightarrow\frac{x-1}{2}=\frac{1}{4}\Rightarrow x-1=\frac{1}{2}\Rightarrow x=\frac{3}{2}\)(thỏa mãn)
c, \(B>0\Rightarrow\frac{x-1}{2}>0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy với x > 1 thì B > 0
\(B< 0\Rightarrow\frac{x-1}{2}< 0\Rightarrow x-1< 0\Rightarrow x< 1\)
Vậy với x < 1 và \(x\ne\left\{-5;0\right\}\) thì B < 0
a. tìm điều kiện xác định của P
ĐKXĐ: \(x\ne0;x\ne\pm1\)
\(P=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(P=\frac{4x+\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)
\(P=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)
\(P=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)
\(P=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)
\(P=\frac{x}{x-1}\)
b. tìm x
Với P = 2 ta có:
\(\frac{x}{x-1}=2\)
=> x = 2(x-1)
=> x = 2x -2
=> 2x - x = 2
=> x = 2
Vậy với x = 2 thì P = 2
c. với 0 < x < 1 . hãy so sánh P với |P|
\(P=\frac{x}{x-1}\)
Với 0< x < 1 thì x -1 <0 ; x>0 => P <0
Suy ra P< |P| ( vì |P| >0)
A. DE P XAC DINH
<=>X^2-1 KHÁC 0<=>X KHAC -1 VÀ X KHÁC 1
<=>2X+2 KHAC 0 <=>X KHAC-1
<=>2X KHAC 0 <=>X KHAC 0
=> X KHAC O HOAC X KHAC +-1
TACO:( 2X / X^2-1 +X-1/ 2X+2 ) : X+1 / 2X
=[2X . 2 / (X+1)(X-1). 2 + (X-1)(X-1) / 2(X+1)(X-1) ] : X+1/2X
=[4X+(X-1)^2] / 2(X+1)(X-1) :X+1 / 2X
=(4X+X^2-2X+1) / 2(X+1)(X-1) : X+1/2X
=X^2+2X+1 / 2(X-1)(X+1) : X+1 / 2X
=(X+1)^2 / 2(X-1)(X+1) : X+1/2X
=(X+1) / 2(X-1) . 2X/X+1
=X/X-1
B. DE P=2
<=>X/X-1=2
<=>X=2(X-1)=2X-2=X+X-2
TA CÓ: X +X-2 = X+0
=>X-2=0
=>X=2
C .VI 0<X<1
=>X / X-1 = |X/X-1|
=>P=|P|