K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III

29 tháng 11 2019

Đường thẳng d đi qua M 0 và có vecto chỉ phương n P → (A; B; C)

Do đó phương trình tham số của d là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

27 tháng 5 2017

Hình giải tích trong không gian

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

Ôn tập chương III

3 tháng 4 2017

a) Phương trình đường thẳng d có dạng: , với t ∈ R.

b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương

(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).

Do vậy phương trình tham số của d có dạng:

c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:

d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương

(4 ; 2 ; -1) nên phương trình tham số có dạng:


NV
20 tháng 6 2020

Mặt cầu tâm \(I\left(2;1;1\right)\) bán kính \(R=3\)

Xét mặt phẳng (P) chứa M có phương trình: \(x+2y+2z-A=0\)

Ta cần tìm A nhỏ nhất sao cho (P) cắt (S) tại ít nhất 1 điểm

\(\Rightarrow d\left(I;\left(P\right)\right)\le R\Leftrightarrow\frac{\left|2+2+2-A\right|}{\sqrt{1^2+2^2+2^2}}\le3\)

\(\Leftrightarrow\left|A-6\right|\le9\Rightarrow-9\le A-6\le9\Rightarrow-3\le A\le15\)

\(\Rightarrow A_{min}=-3\Rightarrow\) phương trình (P): \(x+2y+2z+3=0\)

Pt đường thẳng d qua I và vuông góc (P): \(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+2t\end{matrix}\right.\)

M là giao điểm (P) và d nên tọa độ thỏa mãn:

\(2+t+2\left(1+2t\right)+2\left(1+2t\right)+3=0\Rightarrow t=-1\Rightarrow M\left(1;-1;-1\right)\)

\(\Rightarrow x+y+z=-1\)

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III