K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2023

Ta có: F(5;0) nên \(\dfrac{p}{2}\)=5 ➝p=10

Vậy phương trình chính tắc của parabol (P): \(y^2\)= 2.10.x hay (P):\(y^2\)=20x

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Phương trình chính tắc của elip có dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Elip đi qua \(A\left( {5;0} \right)\) nên ta có \(\frac{{{5^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Leftrightarrow {a^2} = 25\)

Mặt khác elip có một tiêu điểm \({F_2} = \left( {3;0} \right)\) nên ta có \(c = 3\), suy ra \({b^2} = {a^2} - {c^2} = 25 - {3^2} = 16\)

Vậy phương trình của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).

20 tháng 2 2017

Đáp án: C

Vì parabol có tiêu điểm F(2;0) nên p/2 = 2 ⇒ p = 4

Vậy phương trình parabol là: (P):  y 2  = 8x

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Nhập lệnh: Hypebon((-5,0),(5,0),(3,0)) vào ô nhập lệnh rồi bấm enter.

b) Nhập lệnh: y^2=5*x vào ô nhập lệnh rồi bấm enter

c)

Bước 1: Tạo thanh trượt a: Nháy vào biểu tượng thanh trượt, sau đó nháy cuột lên vùng làm việc, khi đó trên vùng làm việc xuất hiện bảng cho phép thiết lập thông tinh cho thanh trượt: Tên thanh trượt (a), giá trị dạng số/ số nguyên, giá trị cực tiểu (1), giá trị cực đại (10).

Bước 2: Tạo thanh trượt b: Làm tương tự với thiết lập thông tin chẳng hạn như:

 Tên thanh trượt (b), giá trị dạng số, giá trị cực tiểu (0), giá trị cực đại (5), số gia (0,5).

Bước 3: Nhập phương trình chính tắc của elip vào ô Nhập lệnh:

x^2 / a^2 + y^2 / b^2 =1 và bấm enter.

Di chuyển trên thanh trượt vào giá trị a=3, b=1 ta được như hình dưới

 Di chuyển trên thanh trượt vào giá trị a=6, b=3,5 ta được như hình dưới

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Do parabol có tiêu điểm  là \(F\left( {6;0} \right)\) nên ta có \(\frac{p}{2} = 6 \Leftrightarrow p = 12\)

Vậy phương trình chính tắc của parabol là: \({y^2} = 24x\)

30 tháng 4 2023

 \(F_1F_2=2c=2\sqrt{5}\)

\(\Rightarrow c=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\)

\(\left(E\right)\) qua  \(\left(5;0\right)\Rightarrow a=5\)

Ta có : \(b=\sqrt{a^2-c^2}\)

\(\Rightarrow b^2=a^2-c^2\)

\(\Rightarrow b^2=5^2-\sqrt{5}^2\)

\(\Rightarrow b^2=25-5=20\)

Vậy \(PTCT\left(E\right):\dfrac{x^2}{25}+\dfrac{y^2}{20}=1\)

 

30 tháng 4 2023

cảm ơn ạ

F2(5;0)

=>c=5

(E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

9/b^2=1

=>b=3

c^2=a^2-b^2

=>a^2=5^2+3^2=34

=>(E): x^2/34+y^2/9=1

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Từ giả thiết ta có \(a = 5,b = 4\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

b) Ta có: \(a = 5,c = 3 \Rightarrow b = \sqrt {{a^2} - {c^2}}  = \sqrt {{5^2} - {3^2}}  = 4\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

c) Từ giả thiết ta có: \(2a = 16,2b = 12 \Rightarrow a = 8,b = 6\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)

d) Từ giả thiết ta có: \(2a = 20,2c = 12 \Rightarrow a = 10,c = 6 \Rightarrow b = \sqrt {{a^2} - {c^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)