Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Gọi 3 số tự nhiên liên tiếp là a , a + 1 , a + 2
Tổng của 3 số tự nhiên liến tiếp là :
a + a + 1 + a + 2 = 3a + 1 + 2 = 3a + 3 \(⋮\)3
=> Tổng của 3 số tự nhiên liến tiếp luôn là một số chia hết cho 3
b ) Gọi 4 số tự nhiên liên tiếp là a , a + 1 , a + 2 , a + 3
Tổng của 4 số tự nhiên liên tiếp là :
a + a + 1 + a + 2 + a + 3= 4a + 1 + 2 + 3 = 4a + 6
Mà 4a \(⋮\)4 ( 1 )
6\(⋮̸\) 4 ( 2 )
Từ ( 1 ) và ( 2 ) => Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
Liên tiếp cơ mà bạn :v
Hai số tự nhiên liên tiếp có dạng 2k và 2k + 2 ( với k ∈ N )
Tích của chúng = 2k( 2k + 2 ) = 4k2 + 4k = 4( k2 + k ) chia hết cho 2
=> đpcm
Sai rồi em ơi, bài làm đúng phải như vậy nhé:
G/s 2 số tự nhiên liên tiếp đó có dạng là k và k+1 với \(k\inℕ\)
+ Nếu k lẻ: => k+1 chẵn => k(k+1) chẵn => k(k+1) chia hết cho 2
+ Nếu k chẵn => k(k+1) chẵn => k(k+1) chia hết cho 2
=> k(k+1) luôn chia hết cho 2
=> Tích 2 STN liên tiếp luôn chia hết cho 2
=> đpcm
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A = 2 + 22 + 23 + 24 + ... + 260
=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
=> A = 2( 1 + 2 ) + 22(1 + 2 ) + ... + 259( 1 + 2 )
=> A = 2 . 3 + 22 . 3 + ... + 259 . 3
=> A = ( 2 + 22 + 259 ) . 3 chia hết cho 3
Vậy A chia hết cho A
bài 1 ko
bài 2
ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)
\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)
bài 3
a)
\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)
\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)
b)
\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)
a, Gọi 4 số tự nhiên chẵn là: n,n+2,n+4,n+6 (n chẵn, n là số tự nhiên )
ta có:n+n+2+n+4+n+6
=4n+12=4(n+3)
thấy 4 chia hết cho 4 => 4(n+3) chia hết cho 4
b, Gọi 4 số tự nhiên liên tiếp là : n,n+1,n+2,n+3 (n là số tự nhiên)
Ta có:n+n+1+n+2+n+3=4n+6=2(2n+3)
vì:2 0 chia hết cho 4
2n+3 chia 4 dư \(\orbr{\begin{cases}1\\2\end{cases}}\)
nên ...............
tu ma lam hoc nhu ngu cung hoc de rua
Đặt tích 3 số tự nhiên liên tiếp là a * (a + 1) * (a + 2)
+Nếu a = 2k thì:
a * (a + 1) * (a + 2) chia hết cho 2
+ Nếu a = 2k +1 thì:
a+1=2k+1+1=2k+2 chia hết cho 2
Suy ra a * (a + 1) * (a + 2) chia hết cho 2
+ Nếu a = 3k thì
a * (a + 1) * (a + 2) chia hết cho 3
+ Nếu a = 3k +1 thì
a+2=3k+1+2=3k+3 chia hết cho 3
Suy ra a * (a + 1) * (a + 2) chia hết cho 3
+ Nếu a = 3k+2 thì:
a+1=3k+2+1=3k+3 chia hết cho 3
Suy ra a * (a + 1) * (a + 2) chia hết cho 3
Vì 2 và 3 nguyên tố cùng nhau nên a * (a + 1) * (a + 2) chia hết cho 2.3=6 (đpcm)