K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Vd : \(x^2+6x+10\)

Ta có : 10 không căn được 

Mà : \(x^2+2.x.3+3^2\)

Nhưng 32 chỉ là 9 nên ta cộng thêm 1 ở vế sau 

\(\left(x^2+2.x.3+3^2\right)+1\)

\(\left(x+3\right)^2+1\)

Dư 1 ở ngoài : 

Vì \(\left(x+3\right)^2\ge0\)

=> \(\left(x+3\right)^2+1\ge1\)

=> GTNN  là 1 

Khi ( x + 3 ) = 0

         x = -3

 

 

Khi 

9 tháng 8 2016

 

Giải

Ta có  nên  

Vậy: f(x) đạt GTNN bằng  khi 

 

Ta có   nên 

Vậy: g(x) đạt GTNN bằng  khi 

14 tháng 8 2023

Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c 

Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất;  nếu a < 0 thì em sẽ tìm giá trị lớn nhất 

Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất

Bước 3: kết luận

                  Giải:

A = 3\(x^2\) - 5\(x\) + 3  Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất

A = 3\(x^2\) - 5\(x\) + 3 

A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\))  + \(\dfrac{11}{12}\) 

A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) 

Vì (\(x-\dfrac{5}{6}\))2 ≥ 0  ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)

Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)

 

22 tháng 3 2018

1)  \(\left(a+b\right)^2\left(b+c\right)^2\ge4abc\left(a+b+c\right)\)

2)  Cho   \(a+b=2.\)CMR:   

a)  \(a^2+b^2\ge2\)

b)  \(a^4+b^4\ge2\)

c)  \(a^8+b^8\ge2\)

3)  \(a+b+c+d=2.\) CMR   \(a^2+b^2+c^2+d^2\ge1\)

19 tháng 7 2019

Trả lời

2002 x 1006

= ( 1504 + 498 ) x ( 1504 - 498 )

= 15042 - 4982

= 2014012

198 x 202 

= ( 200 - 2 ) x ( 200 + 2 )

= 2022 - 22

= 40800

Giải mã bài toán chứng minh 4=5.Bài toán này vốn là 1 bài toán mẹo nhưng đây thực ra đây là bài toán phản khoa học của mấy đứa bạn học sinh lớp 8 hiện nay nghĩ ra. Sau đây là mẹo của những người làm bài mà mọi người ko để ý được:+Những người giải được bài này thường dựa vào đẳng thức của năm lớp 7 là (-A)^2=A^2 với mọi A E R để đánh lừa người khác. Một số người chứng...
Đọc tiếp

Giải mã bài toán chứng minh 4=5.

Bài toán này vốn là 1 bài toán mẹo nhưng đây thực ra đây là bài toán phản khoa học của mấy đứa bạn học sinh lớp 8 hiện nay nghĩ ra. Sau đây là mẹo của những người làm bài mà mọi người ko để ý được:

+Những người giải được bài này thường dựa vào đẳng thức của năm lớp 7 là (-A)^2=A^2 với mọi A E R để đánh lừa người khác. Một số người chứng minh bài này đều đưa đến kết quả hằng đẳng thức (4-9/2)^2=(5-9/2)^2=>(-0,5)^2=(0,5)^2. Từ đẳng thức (-A)^2=A^2 những người này đã "hô biến" (-0,5)^2 thành (0,5)^2 để khẵng định -0,5=0,5 rồi suy ra 4=5 nhưng thực ra bài toán này ko đúng và phản khoa học vì cứ làm như vậy thì dễ dàng chứng minh các số khác bằng nhau. Cứ như vầy thành ra các số thực đều bằng nhau, đâm ra phản khoa học và gây ảnh hưởng lớn đến nền toán học. Một bài toán chứng minh 4=5 thế này thì đã góp phần làm xấu nền toán học.

3
26 tháng 1 2016

tối cũng đồng ý mặc dù tôi ko biết j về toán lơp8

25 tháng 4 2016

Dong y

13 tháng 8 2017

https://www.youtube.com/watch?v=f99DLXfQqOA

Dễ thuộc =))))

13 tháng 8 2017

Dễ lắm( -.-)

Đầu tiên học 3 hằng đẳng thức viết vào tập khoảng 4,5 lần nếu thuộc rồi thì chuyển qua 3 cái khác đến hết 7 hằng đẳng thức thì xong:-)

20 tháng 3 2018

một bài bđt khó nha    cho a,b,c là các số dương  thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức sau:

                                  P=1/1+a^2  +1/1+b^2  +1/1+c^2

10 tháng 9 2020

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

27 tháng 8 2019

Học hằng đẳng thức chưa vậy em :3

(x+2y-3)2 - 4(x+2y-3)+4

= ((x+2y-3)2 - 2.2(x+2y-3)+2^2

=((x+2y-3)-2)^2

27 tháng 8 2019

Cậu hok hằng đẳng thức chưa vậy :))

\(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)

\(=\left(x+2y-3\right)^2-2.\left(x+2y-3\right).2+2^2\)

\(=\left[\left(x+2y-3\right)-2\right]^2\)

\(=\left(x+2y-5\right)^2\)

11 tháng 9 2017

\(P=2x^2+x+1\)

\(P=\left(\sqrt{2}.x\right)^2+2.\sqrt{2}.\frac{1}{2}x+\frac{1}{2}-\frac{1}{2}+1\)

\(P=\left(\sqrt{2}.x+\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}-1\right)\)

\(P=\left(x\sqrt{2}+\sqrt{\frac{1}{2}}\right)^2-\left(-\frac{1}{2}\right)\)

\(P=\left(x\sqrt{2}+\sqrt{\frac{1}{2}}\right)^2-\left(-\sqrt{\frac{1}{2}}\right)^2\)

\(P=\left(x\sqrt{2}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{2}}\right)\left(x\sqrt{2}+\sqrt{\frac{1}{2}}-\sqrt{\frac{1}{2}}\right)\)

\(P=\left(x\sqrt{2}\right)\left(x\sqrt{2}\right)\)

\(P=\left(x\sqrt{2}\right)^2\)

\(P=2x^2\)