\(6\sqrt{\dfrac{x}{2y}}\) với
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=6\cdot\sqrt{\dfrac{2xy}{4y^2}}\)

\(=6\cdot\dfrac{\sqrt{2xy}}{-2y}=-\dfrac{3\sqrt{2xy}}{y}\)

b: \(=\dfrac{4xy^2}{3}\cdot\dfrac{3}{\sqrt{xy}}=4\sqrt{x}\cdot y\sqrt{y}\)

a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)

b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)

c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)

d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)

17 tháng 10 2019
https://i.imgur.com/zmqmZ1u.jpg

Bài 2: 

a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)

b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)

19 tháng 7 2018

câu a nè:

http://123link.pw/0Qyw5v

19 tháng 7 2018

câu d nè : http://123link.pw/Jx46C

nhớ cho đúng nha ^-^

24 tháng 4 2017

a. \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{2.3}{3^2}}=\dfrac{1}{3}.\sqrt{6}\)

b. \(\sqrt{\dfrac{x^2}{5}}=\sqrt{\dfrac{5x^2}{5^2}}=\dfrac{x}{5}.\sqrt{5}\) (vì x \(\ge\) 0)

c. \(\sqrt{\dfrac{3}{x}}=\sqrt{\dfrac{3.x}{x^2}}=\dfrac{1}{x}.\sqrt{3x}\) (vì x > 0)

d. \(\sqrt{x^2-\dfrac{x^2}{7}}=\sqrt{\dfrac{6x^2}{7}}=\sqrt{\dfrac{6x^2.7}{7.7}}=\sqrt{\dfrac{42.x^2}{7^2}}=-\dfrac{x}{7}.\sqrt{42}\) (vì x < 0)

31 tháng 3 2017

a) = . = . = vì x > 0.

Do đó = .

b) = . = ..

Vì y < 0 nên │y│= -y. Do đó = . = .

c) 5xy. = 5xy. = 5xy..

Vì x < 0, y > 0 nên = -x và = .

Do đó: 5xy = 5xy. = -.

d) 0,2 = = 0,2 =

Nếu x > 0 thì > 0 nên . Do đó 0,2 = .

Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.

a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)

b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)

\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)

c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)

31 tháng 5 2017

éo biết

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)