Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{7}+\sqrt{11}\)\(+\sqrt{32}+\sqrt{40}\) < 18
k mk nha
\(\sqrt{7}+\sqrt{11}+\sqrt{32}+\sqrt{40}\)\(< 18\)nha bạn
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)
\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)
Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)
Dễ
Bình phương cả 2 vế ta đc
42+2 và 40+2+2.\(4\sqrt{5}\)
42+2 và 42+2.\(4\sqrt{5}\)
Ta thấy \(4\sqrt{5}\) >2
Suy ra 42+2<42+2.\(4\sqrt{5}\)
=>\(\sqrt{42+2}<\sqrt{40}+\sqrt{2}\)
Ta có:\(\left(\sqrt{42+2}\right)^2=44\)(1)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=44+2\sqrt{80}\)(2)
Do (1)<(2)
=>\(\sqrt{42+2}<\sqrt{40}+\sqrt{2}\)
18lon hon nhe