\(A=\sqrt{2012}-\sqrt{2011}\) và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Ta có:\(\) \(\left(\sqrt{2012}-\sqrt{2011}\right)\left(\sqrt{2012}+\sqrt{2011}\right)=1\)

\(\left(\sqrt{2011}-\sqrt{2010}\right)\left(\sqrt{2011}+\sqrt{2010}\right)=1\)

\(\left(\sqrt{2012}+\sqrt{2011}\right)>\left(\sqrt{2011}+\sqrt{2010}\right)\)

nên \(\left(\sqrt{2012}-\sqrt{2011}\right)< \left(\sqrt{2011}-\sqrt{2010}\right)\)

Vậy A<B.

23 tháng 8 2016

Ta có: \(A=\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\)

\(=\sqrt{2011}-\sqrt{2010}< \sqrt{2011}.\sqrt{2010}=B\)

Vậy A<B

16 tháng 8 2016

Chưa tính nhưg nghĩ là

\(\sqrt{2012}-\sqrt{2011}\) > \(\sqrt{2011}-\sqrt{2010}\)

11 tháng 9 2018

B=\(2\sqrt{2012}\)nhé

nhanh giúp mình với

5 tháng 8 2015

\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)

\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)

~~> So sánh mẫu

2 tháng 11 2018

trên mạng có đó Triphai Tyte

3 tháng 11 2018

cho mình xin link đi

10 tháng 10 2018

Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)

\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)

Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)

\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)

=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)

\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

9 tháng 8 2020

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn