có 2 nghiệm phân biệt với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a=-1; b=-2m^2-2m-2; c=m^2+m+1

A=a*c=-(m^2+m+1)

=-(m^2+m+1/4+3/4)

=-(m+1/2)^2-3/4<0

=>Phương trình luôn có hai nghiệm phân biệt

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

19 tháng 3 2022

a= 1; b'= -(m+1); c=2m

1. Δ'>0

Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m

2. Để PT có 2 nghiệm cùng dương 

\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)

Vậy với m>0 thì PT có 2 nghiệm cùng dương

3.  Từ Viets: 

S= 2(m+1)= 2m+2 

P= 2m

Suy ra: S-P=2m+2-2m=2

hay x1+x2-x1.x2-2=0

27 tháng 11 2015

Ta có: 2m2 + 3 + n2 > 0 . Xét:

\(\Delta=\left(m-1\right)^2+4\left(2m^2+n^2+3\right)\left(m^2-2mn+n^2+2\right)\)

\(=m^2-2m+1+4\left(2m^4-4m^3n+3m^2n^2+2m^2-2mn^3+n^4+5n^2+3m^2-6mn+6\right)\)

\(=m^2-2m+1+8m^4-16m^3n+12m^2n^2+8m^2-8mn^3+4n^4+20n^2+12m^2-26mn+24\)\(=8m^4+4n^4-16m^3n-8mn^3+12m^2n^2+21m^2+20n^2-26mn-2m+25\)

 

27 tháng 11 2015

đồng ý kiến với Tạ Duy Phương

a*c=-(m^2+m+1)

=-(m^2+m+1/4+3/4)

=-(m+1/2)^2-3/4<0

=>Phương trình luôn có 2 nghiệm pb

16 tháng 1 2016

1>\(\Delta=b^2-4ac\)

\(=m^2-4\left(2m-1\right)\left(-m+1\right)\)

khai triển ra là được \(\left(3m-2\right)^2\ge0\)

=>phương trình luôn có ít nhất là một nghiệm

2>để phương trình có 2 nghiệm phân biệt thì \(\left(3m-2\right)^2>0\)=>\(3m-2>0\Rightarrow m>\frac{2}{3}\)

còn cần tìm x thì theo công thức mà tìm

3> thế vô mà tìm