Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)
Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)
Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)
A B C 15 0 D
Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)
Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)
Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)
Lời giải :
a) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)
\(=0,1-\sqrt{0,1}\)
b) \(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
c) \(\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
d) \(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}-2\)
e) \(\sqrt{16-6\sqrt{7}}=\sqrt{9-2\cdot3\cdot\sqrt{7}+7}=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7}\)
B = \(\frac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\frac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{8+2\sqrt{7}}{6+\sqrt{8+2\sqrt{7}}}+\frac{8-2\sqrt{7}}{6-\sqrt{8-2\sqrt{7}}}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{6+\sqrt{7}+1}+\frac{\left(\sqrt{7}-1\right)^2}{6-\sqrt{7}+1}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{\sqrt{7}\left(\sqrt{7}+1\right)}+\frac{\left(\sqrt{7}-1\right)^2}{\sqrt{7}\left(\sqrt{7}-1\right)}\)
=> \(\frac{2}{\sqrt{2}}B=\frac{\sqrt{7}+1}{\sqrt{7}}+\frac{\sqrt{7}-1}{\sqrt{7}}=\frac{2\sqrt{7}}{\sqrt{7}}=2\)
=> B = \(\sqrt{2}\)
\(T=\frac{\sqrt{2}.\left(4+\sqrt{7}\right)}{\sqrt{2}.\left(2\sqrt{2}+\sqrt{4+\sqrt{7}}\right)}+\frac{\sqrt{2}.\left(4-\sqrt{7}\right)}{\sqrt{2}.\left(2\sqrt{2}-\sqrt{4-\sqrt{7}}\right)}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\sqrt{8+2\sqrt{7}}}+\frac{4\sqrt{2}-\sqrt{14}}{4-\sqrt{8-2\sqrt{7}}}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\sqrt{7+2\sqrt{7}+1}}+\frac{4\sqrt{2}-\sqrt{14}}{4-\sqrt{7-2\sqrt{7}+1}}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\left(\sqrt{7}+1\right)^2}+\frac{4\sqrt{2}-\sqrt{14}}{4-\left(\sqrt{7}-1\right)^2}\)\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+|\sqrt{7}+1|}+\frac{4\sqrt{2}-\sqrt{14}}{4-|\sqrt{7}-1|}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\sqrt{7}+1}+\frac{4\sqrt{2}-\sqrt{14}}{4-\sqrt{7}+1}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{5+\sqrt{7}}+\frac{4\sqrt{2}-\sqrt{14}}{5-\sqrt{7}}\)
\(T=\frac{\left(4\sqrt{2}+\sqrt{14}\right).\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right).\left(5-\sqrt{7}\right)}+\frac{\left(4\sqrt{2}-\sqrt{14}\right).\left(5+\sqrt{7}\right)}{\left(5+\sqrt{7}\right).\left(5-\sqrt{7}\right)}\)
\(T=\frac{20\sqrt{2}-\sqrt{98}}{9}\)
\(T=\frac{13\sqrt{2}}{9}\)
3: \(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
4: \(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
5: \(=\dfrac{\sqrt{23-8\sqrt{7}}}{3}+\dfrac{\sqrt{23+8\sqrt{7}}}{3}\)
\(=\dfrac{4-\sqrt{7}+4+\sqrt{7}}{3}=\dfrac{8}{3}\)
a) A=12\(\sqrt{3}\)
B= \(\frac{8}{3}\)
c) C= 1
d)...
Chúc bạn học tốt nha ^^!
a) \(\frac{2}{4-3\sqrt{2}}-\frac{2}{4+3\sqrt{2}}\)
\(=\frac{2\left(4+3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}-\frac{2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)
\(=\frac{2\left(4+3\sqrt{2}\right)-2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)
\(=\frac{12\sqrt{2}}{-2}\)
\(=-6\sqrt{2}\)
b) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}-\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2-\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
\(=\frac{4\sqrt{35}}{2}\)
\(=2\sqrt{35}\)
không dùng máy tính sao tính dc hỏi ngu
Ta có :
\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=8-6=2\)
\(\Rightarrow\)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{2}\) ( vì \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}>0\) )
\(\Rightarrow\)\(M=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
Vậy \(M=0\)
Chúc bạn học tốt ~