Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.
Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.
Vậy khi tăng f thì cường độ I giảm.
Chọn D.
Áp dụng công thức:
$P_1=\dfrac{U^2}{R_1}\cos ^2\varphi _1$ và $P_2=\dfrac{U^2}{R_2}\cos ^2\varphi _2$
$\Leftrightarrow 60=\dfrac{100^2}{50}\cos ^2\varphi _1\Leftrightarrow \cos ^2\varphi _1=\dfrac{3}{10}$
$\Leftrightarrow \cos ^2\varphi _2=\dfrac{9}{20}$
$\Leftrightarrow P_2=180$
$\dfrac{P_2}{P_1}=3$
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Do tỉ lệ trong bài như vậy, nên ta có thể dễ dàng chọn một bộ số sau thỏa mãn:
Uc2 = 1, Uc1 = 2
UR1 = 1, UR2 = 2
Khi đó điện áp của mạch \(U=\sqrt{5}\)
Vậy hệ số công suất:
\(\cos\varphi_1=\frac{U_{R1}}{U}=\frac{1}{\sqrt{5}}\)
\(\cos\varphi_2=\frac{U_{R2}}{U}=\frac{2}{\sqrt{5}}\)
Bài này mình làm rồi, đáp án như của mình mới đúng. Bạn xem lại đi nhé.
Ta áp dụng kết quả sau:
Mạch RLC có R thay đổi, khi R = R1 hoặc R = R2 thì công suất của mạch như nhau là P, khi đó:
\(\begin{cases}R_1+R_2=\frac{U^2}{P}\\R_1R_2=\left(Z_L-Z_C\right)^2\end{cases}\)
\(\Rightarrow R_1R_2=Z_C^2=100^2\)(1)
Điện áp hiệu dụng giữa hai đầu tụ điện: \(U_C=IZ_C=\frac{U.Z_C}{\sqrt{R^2+Z_C^2}}\)
\(U_{C1}=2U_{C2}\)
\(\Rightarrow\frac{U.Z_C}{\sqrt{R_1^2+Z_C^2}}=\frac{2U.Z_C}{\sqrt{R^2_2+Z_C^2}}\)
\(\Rightarrow2\sqrt{R_1^2+Z_C^2}=\sqrt{R_2^2+Z_C^2}\)
\(\Rightarrow4\left(R_1^2+100^2\right)=\left(R_2^2+100^2\right)\)
\(\Rightarrow4R_1^2-R_2^2=-3.100^2\)
Rút R2 ở (1) thế vào pt trên ta đc:
\(4R_1^2-\frac{100^4}{R_1^2}=-3.100^2\)
\(\Rightarrow4R_1^4+3.100^2.R_1^2-100^4=0\)
\(\Rightarrow R_1=50\Omega\)
\(\Rightarrow R_2=20\Omega\)
Do giá trị hiệu dụng I1 = I2
nên Z1 = Z2
Ta có thể biểu diễn Z trên giản đồ như thế này.
i Z1 Z2 α α
Chiều của Z chính là chiều của điện áp u
+ So với i1 thì pha ban đầu của u là: \(\frac{\pi}{4}-\alpha\)
+ So với i2 thì pha ban đầu của u là: \(-\frac{\pi}{12}+\alpha\)
\(\Rightarrow\frac{\pi}{4}-\alpha=-\frac{\pi}{12}+\alpha\)
\(\Rightarrow\alpha=\frac{\pi}{6}\)
\(\Rightarrow\varphi_u=\frac{\pi}{4}-\frac{\pi}{6}=\frac{\pi}{12}\)
Vậy \(u=60\sqrt{2}\cos\left(100\pi t+\frac{\pi}{12}\right)V\)
Để cường độ dòng điện trong mạch đạt cực đại thì cần điều chỉnh tần số đến giá trị \(f_0\)
\(\Rightarrow f_0=\sqrt{f_1.f_2}=\sqrt{25.100}=50(hz)\)
Theo giả thiết thì ổng dây có điện trở R.
\(R=\dfrac{U_1}{I_1}=10\Omega\)
Khi nối vào mạng xoay chiều: \(Z=\sqrt{R^2+Z_L^2}=\dfrac{100}{3}\)
Từ đó tìm được \(Z_L\) và tìm \(L\)