K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

NV
12 tháng 11 2019

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)

11 tháng 4 2016

Theo công thức nhị thức Niu-tơn, ta có :

\(P=C_6^0\left(x-1\right)^6+C_6^1\left(x-1\right)^5+....+C_6^kx^{2k}\left(x-1\right)^{6-k}+....+C_6^5x^{10}\left(x-1\right)+C_6^6x^{12}\)

Suy ra, khi khai triển P thành đa thức, \(x^2\) chỉ xuất hiện khi khai triển \(C_6^0\left(x-1\right)^6\) và \(C_6^1\left(x-1\right)^5\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^0\left(x-1\right)^6\)  là : \(C_6^0.C_6^2\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^1\left(x-1\right)^5\)  là : \(-C_6^1.C_5^0\)

Vì vậy hệ số của  \(x^2\) trong khai triển P thành đa thức là : \(C_6^0.C_6^2-C_6^1.C_5^0=9\)

 
 
 

 

27 tháng 7 2018

ta có : \(\left(x+\dfrac{1}{x}\right)^{12}=\sum\limits^{12}_{k=0}C^k_{12}x^{12-k}.\left(\dfrac{1}{x}\right)^k=\sum\limits^{12}_{k=0}C^k_{12}x^{12-2k}\)

để có \(x^8\) trong khai triển thì \(12-2k=8\Leftrightarrow k=2\)

\(\Rightarrow\) hệ số của \(x^8\) trong khai triển là \(C^2_{12}=66\)

5 tháng 12 2019
https://i.imgur.com/tn5QJFT.jpg
3 tháng 4 2017

(x+ )6 = Ck6 . x6 – k . ()k = Ck6 . 2k . x6 – 3k

Trong tổng này, số hạng Ck6 . 2k . x6 – 3k có số mũ của x bằng 3 khi và chỉ khi

⇔ k = 1.

Do đó hệ số của x3 trong khai triển của biểu thức đã cho là:

2 . C16 = 2 . 6 = 12.

25 tháng 3 2020

\(\left(\frac{1}{x}+x^3\right)^n=\sum\limits^n_{k=0}C^{n-k}_n\left(\frac{1}{x}\right)^{n-k}.\left(x^3\right)^k\)

Tổng các hệ số: \(C^0_n+C^1_n+...+C^n_n=\left(1+1\right)^n=2^n=1024\)

=> n = 10

3 tháng 4 2017

 

Với số thực x ≠ 0 và với mọi số tự nhiên n ≥ 1, ta có:

(1 - 3x)n = [1 - (3x)]n = Ckn (1)n – k (-3)k . xk.

Suy ra hệ số của x2trong khai triển này là 32C2n .Theo giả thiết, ta có:

32C2n = 90 => C2n = 10.

Từ đó ta có:

= 10 ⇔ n(n - 1) = 20.

⇔ n2 – n – 20 = 0 ⇔ n = -4 (loại) hoặc n = 5.

ĐS: n = 5.

19 tháng 5 2017

Số hạng thứ \(k+1\) của khai triển là :

\(t_{k+1}=C^k_n\left(3x\right)^k\)

Vậy số hạng chứa \(x^2\)\(t_3=C^2_n9.x^2\)

Theo đề bài ta có :

\(9.C^2_n=90\Leftrightarrow C^2_n=10\Leftrightarrow n=5\)