Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔACM có
\(\widehat{AMB}=\widehat{ACM}\)
\(\widehat{MAB}\) chung
Do đó: ΔAMB∼ΔACM
Suy ra: AM/AC=AB/AM
hay \(AM^2=AB\cdot AC\)
b: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp(1)
Xét tứ giác AHON có
\(\widehat{AHO}+\widehat{ANO}=180^0\)
Do đó:AHON là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn
hay AMHN là tứ giác nội tiếp
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
Câu a),b) tự làm nhé , mình chỉ giúp câu c) thôi .
OI vuông góc NP ( Do I là trung điểm của MP ) , OF vuông góc NP ( Do OF là đường trung trực của NP )
=> O,I,F thẳng hàng
Tam giác ONF vuông tại N , đường cao NI
=> ON^2 = OI.OF
Mà ON=OA
OA^2 = OH.OM
=> OH.OM=OI.OF
=> OH/OI=OF/OM
Xét tam giác OIM và tam giác OHF có
góc MOF chung
OH/OI=OF/OM
=> Tam giác OIM đồng dạng tam giác OHF
=> góc OHF=góc OIM (=90 độ )
OH vuông HF
mà OH vuông AB
=> A,B,F thẳng hàng
=> F nằm trên đường thẳng cố định AB khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài
Điều phải chứng minh
Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$
$⇒OI ⊥BC$ (tính chất)
Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn
$⇒AM⊥OM;AN⊥ON;AM=AN$
Xét tứ giác $AMON$ có:
$\widehat{AMO}=\widehat{ANO}=90^o$
$⇒\widehat{AMO}+\widehat{ANO}=180^o$
$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)
$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)
Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$
$⇒\widehat{AIO}+\widehat{ANO}=180^o$
$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)
hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)
Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)
b, $K$ sẽ là giao điểm của $MN$ và $AC$
5 điểm $A;I;O;M;N$ thuộc 1 đường tròn
$⇒$ Tứ giác $AMIN$ nội tiếp
$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)
Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$
$⇒\widehat{AMN}=\widehat{ANM}$
$⇒\widehat{AIM}=\widehat{AMN}$
hay $\widehat{AIM}=\widehat{AMK}$
Xét $\triangle AIM$ và $\triangle AMK$ có:
$\widehat{AIM}=\widehat{AMK}$
$\widehat{A}$ chung
$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$
$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$
$ ⇒AK.AI=AM^2(3)$
Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)
Xét $\triangle AMB$ và $\triangle ACM$ có:
$\widehat{AMB}=\widehat{ACM}$
$\widehat{A}$ chung
$⇒\triangle AMB \backsim \triangle ACM(g.g)$
$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$
Hay $AB.AC=AM^2(4)$
Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
Ta có
\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)
\(\Rightarrow\Delta ABC\) cân tại A (1)
AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)
Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)
\(\Rightarrow\widehat{AHE}=90^o\) (*)
Ta có
\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O
Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN
\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)
\(\Rightarrow\widehat{AIE}=90^o\) (**)
Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn
Cho đường tròn tâm OO bán kính RR và một điểm AA nằm ngoài đường tròn. Kẻ một đường thẳng đi qua AA và không đi qua OO, cắt đường tròn tại hai điểm phân biệt MM, NN (MM nằm giữa AA và NN). Từ AA vẽ hai tiếp tuyến ABAB và ACAC với (O)(O) (BB, CC là hai tiếp điểm). Đường thẳng BCBC cắt AOAO tại HH. Gọi II là trung điểm của MNMN. Đường thẳng OIOI cắt đường thẳng BCBC tại EE. Chứng minh AHIEAHIE là tứ giác nội tiếp.
theo gt, ta co:
I là trung điểm của MNMN va MN la day cung cua (O)
=> OE vuong goc voi MN tai I
hay goc AIE= 90 (1)
Mat khac, ta lai co A nam ngoai (O);
AC va AB lan luot la cac tiep tuyen cua (O)
=> AO vuong goc voi BC
hay goc AHE = 90 (2)
tu (1) va (2) => tu giac AHIE noi tiep (vi co 2 goc ke bang nhau)