có ai giúp tôi? tôi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:So le trong:  \(\widehat{xAB};\widehat{y'BA}\);\(\widehat{x'AB};\widehat{yBA}\)

Đồng vị: \(\widehat{xAB};\widehat{yBz'}\)

\(\widehat{x'AB};\widehat{y'Bz'}\)

\(\widehat{zAx};\widehat{yBz}\)

\(\widehat{x'Az};\widehat{y'Bz'}\)

20 tháng 10 2017

BT1.

Ta có: \(2009^{20}=2009^{10}\times2009^2\)\(20092009^{10}=2009^{10}\times10001^{10}\)

Rõ ràng \(2009^2< 10001^{10}\\ \Rightarrow2009^{10}\times2009^2< 2009^{10}\times10001^{10}\\ \Rightarrow2009^{20}< 20092009^{10}\left(đpcm\right)\)

BT9. Bn xem lại đề bài đi. \(x^2+x+1\) luôn lớn hơn 0 mà bn.

BT3.

Giả sử \(M\in N\)

Nên:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+x+t}\in N\\\dfrac{z}{z+t+y}\in N\\\dfrac{t}{t+z+x}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+x+t\\z⋮z+t+y\\t⋮t+z+x\end{matrix}\right.\)

\(x,y,z,t\in N\)*\(\Rightarrow x,y,z,t>0\)\(\Rightarrow\left\{{}\begin{matrix}x>x+y+z\\y>x+y+t\\z>y+z+t\\t>x+z+t\end{matrix}\right.\)(vô lí)

Vậy rõ ràng điều giả sử là vô lí. Nên \(M\notin N\left(đpcm\right)\)

Mình chỉ giúp đc đến đây thôi, mong bn thông cảm

Ngoài ra, chúc bn học tốt nhébanhbanhbanhbanhbanh

20 tháng 10 2017

Bài toán 2.

Ta có: \(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+....+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=\dfrac{2009-1}{1}+\dfrac{2009-2}{2}+\dfrac{2009-3}{3}+...+\dfrac{2009-2008}{2008}\)

\(=2009-1+\dfrac{2009}{2}-1+\dfrac{2009}{3}-1+....+\dfrac{2009}{2008}-1\)

\(=2009+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{....1}{2008}\right)-1.2008\)

\(=\left(2009-2008\right)+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=1+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)

=\(2009.A\)

Do đó, tỉ số \(\dfrac{A}{B}=\dfrac{A}{2009.A}=\dfrac{1}{2009}\)

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

a: Xét ΔEFI và ΔEMI có 

EF=EM

FI=MI

EI chung

Do đó: ΔEFI=ΔEMI

b: Ta có: ΔEFM cân tại E

mà EI là đường trung tuyến

nên EI là đường cao

c: Xét ΔEFK và ΔEMK có

EF=EM

\(\widehat{FEK}=\widehat{MEK}\)

EK chung

Do đó: ΔEFK=ΔEMK

Suy ra: FK=MK

Xét ΔNFD và ΔNMK có 

NF=NM

\(\widehat{NFD}=\widehat{NMK}\)

FD=MK

Do đó: ΔNFD=ΔNMK

Suy ra: \(\widehat{FND}=\widehat{MNK}\)

=>\(\widehat{FND}+\widehat{FNM}=180^0\)

hay M,N,D thẳng hàng

17 tháng 3 2017

Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2015k\\y=2016k\\z=2017k\end{matrix}\right.\)

\(\Rightarrow\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]\)

\(=\left(2015k-2017k\right)^3\div\left[\left(2015k-2016k\right)^2\left(2016k-2017k\right)\right]\)

\(=\left(-2k\right)^3\div\left[-k^2\left(-k\right)\right]\)

\(=-8k^3\div\left(-k\right)^3\)

\(=8\)

Vậy \(\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]=8\)

16 tháng 3 2017

ta có x=9+y

thay x=9+y vào biểu thức B ta có:

B=\(\dfrac{7\left(9+y\right)-9}{6\left(9+y\right)+y}\)+\(\dfrac{7\left(9+y\right)+9}{8\left(9+y\right)-y}\)

B=\(\dfrac{63+7y-9}{54+6y+y}\)+\(\dfrac{63+7y+9}{72+8y-y}\)

B=\(\dfrac{54+7y}{54+7y}\)+\(\dfrac{72+7y}{72+7y}\)

B=1+1

B=2

yeu

17 tháng 3 2017

oaoa

16 tháng 3 2017

Ta có: a=512.46=512.(22)6=512.212=(5.2)12=1012

(=1000000000000)

Vậy số chữ số của a là 12.

17 tháng 3 2017

512.46=512.(22)6 (Lũy thừa của lũy thừa đó bn)

=512.22.6=512.212=(5.2)12=1012

=>1012=1000...000 có 12 số 0 và 1 số 1 nên số nay có 13 chữ số

Thanks!

17 tháng 3 2017

Ta có: x và y là 2 đl tlt nên \(\dfrac {x1}{y1} \)=\(\dfrac{x2}{y2}\) .

Thay số: \(\dfrac {6}{y1} \)=\(\dfrac{-9}{y2}\)=\(\dfrac{6-(-9)}{y1-y2}\)=\(\dfrac{15}{10} \)=1,5

=>y1=\(\dfrac{6}{1,5} \)= 4; y2=\(\dfrac{-9}{1,5} \)= -6

Vậy y1+y2=4+(-6)=-2

16 tháng 3 2017

Ta đánh giá phương trình ở đề bài:

Dễ thấy (x-3y)2, (y-1)2, (x+z)2 đều lớn hơn hoặc bằng 0 với mọi giá trị của biến. Do vậy tổng của chúng bằng 0 khi và chỉ khi:\(\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(y-1\right)^2=0\\\left(x+z\right)^2=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3y\\y=1\\x=-z\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\y=1\\z=-3\end{matrix}\right.\)

=>A=3x+2y+z=3.3+2.1-3=8

16 tháng 3 2017

ta có:(x-3y)2>=0

(y+1)2>=0

(x+z)2>=0

=>\(\begin{matrix}\left(x-3y\right)^2=0&=>x-3y=0&=>x=3y&=>x=3&\\\left(y-1\right)^2=0&=>y-1=0&=>y=1&=>y=1&\\\left(x+z\right)^2=0&=>x+z=0&=>z=-x&=>z=-3&\end{matrix}\)

thay x,y,z vào biểu thức A ta có:

A=3.3+2.1+(-3)

A=3+2-3

A=2ok

17 tháng 3 2017

Ta thấy f(x)=10x=x\(^2\)

\(\Rightarrow\)x=10