Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
+, Với \(a=0;b\ne c\ne0\), khi đó:
\(0^2=b^5-b^4c\)
\(\Rightarrow b^4\left(b-c\right)=0\)
\(\Rightarrow b-c=0\) (vì \(b\ne0\))
\(\Rightarrow b=c\) (loại)
+, Với \(b=0;a\ne c\ne0\), khi đó:
\(a^2=0^5-0^4.c\)
\(\Rightarrow a^2=0\Rightarrow a=0\) (loại)
+, Với \(c=0;a\ne b\ne0\), khi đó:
\(a^2=b^5-b^4.0\)
\(\Rightarrow a^2=b^5\)
Mà trong ba số a, b, c có 1 số dương, 1 số âm và 1 số bằng 0 nên ta có các TH sau:
*) Nếu \(a>0;b< 0\) thì:
\(a^2>0;b^5< 0\Rightarrow a^2\ne b^5\) (loại)
*) Nếu \(a< 0;b>0\Rightarrow a^2>0;b^5>0\) (tm)
Vậy số 0 là c; số dương là b; số âm là a.