Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Câu 1:
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=2\end{matrix}\right.\)
Giả sử \(y_1;y_2\) là nghiệm của pt bậc 2 có dạng \(y^2+ay+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-a\\y_1y_2=b\end{matrix}\right.\)
Mặt khác \(\left\{{}\begin{matrix}y_1+y_2=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}\\y_1y_2=\left(x_2+\frac{1}{x_1}\right)\left(x_1+\frac{1}{x_2}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=3+\frac{3}{2}=\frac{9}{2}\\y_1y_2=2+\frac{1}{2}+2=\frac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{9}{2}=-a\\\frac{9}{2}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{9}{2}\\b=\frac{9}{2}\end{matrix}\right.\)
Hay \(y\) là nghiệm của \(y^2-\frac{9y}{2}+\frac{9}{2}=0\Leftrightarrow2y^2-9y+9=0\)
Câu 2:
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=m^2-\left(m-4\right)\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\5m-4\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ge\frac{4}{5}\end{matrix}\right.\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-1}\\x_1x_2=\frac{m-4}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3\left(x_1+x_2\right)}{2}=\frac{3m}{m-1}\\x_1x_2=\frac{m-4}{m-1}\end{matrix}\right.\)
Cộng vế với vế:
\(\frac{3\left(x_1+x_2\right)}{2}+x_1x_2=\frac{4m-4}{m-1}=4\)
\(\Leftrightarrow3\left(x_1+x_2\right)+2x_1x_2-8=0\)
Đây là biểu thức liên hệ giữa 2 nghiệm ko phụ thuộc m
x^2 -(3m-1)x +2m^2 -m=0
a) Khi m=1 ta có phương trình như sau:
x^2 -(3.1 -1)x +2.1-1=0
<=> x^2 -2x +1=0
<=>(x-1)^2 =0
<=>x=1
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
Ta có: \(\Delta=\left(-m\right)^2+4.3=m^2+12>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức vi-et, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Theo bài ra, ta có: x12 + x22 = 5m
<=> (x1 + x2)2 - 2x1x2 = 5m
<=> m2 + 6 = 5m
<=> x2 - 5m + 6 = 0
<=> x2 - 2m - 3m + 6 = 0
<=> (m - 2)(m - 3)= 0
<=> \(\orbr{\begin{cases}m=2\\m=3\end{cases}}\)
\(\Delta'=\left[-\left(m+1\right)\right]^2+m^2=\left(m+1\right)^2+m^2>0\)
=> PT có hai nghiệm phân biệt
Theo hệ thức Vi-ét, ta có
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m+2\right)^2-2m\)
\(=4m^2-8m+4-2m=4m^2-10m+4\)
Mà \(x_1^2+x_2^2=4\sqrt{x_1x_1}\)
\(\Rightarrow4m^2-10m+4=4\sqrt{m}\)
\(\Rightarrow4m^2+10m-4\sqrt{m}-4=0\)
\(\Rightarrow2\left(2m^2+5m-2\sqrt{m}-1\right)=0\)
\(\Rightarrow2m^2+5m-2\sqrt{m}-1=0\)
\(\Rightarrow2\left(m^2+2m-1\right)+\left(m-2\sqrt{m}+1\right)=0\)
\(\Rightarrow2\left(m-1\right)^2+\left(\sqrt{m}-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m-1\right)^2=0\\\sqrt{m}-1=0\end{matrix}\right.\) => m = 1
Vậy giá trị m thỏa mãn là m= 1
Bạn ơi \(x_1x_2=\)\(\frac{c}{a}=m^2\)chứ ạ