Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.a.\frac{x}{7}=\frac{6}{21}=\frac{6:3}{21:3}=\frac{2}{7}\Rightarrow x=2\\ b.\frac{-5}{y}=\frac{20}{28}=\frac{20:\left(-4\right)}{28:\left(-4\right)}=\frac{-5}{-7}\Rightarrow y=-7\)
\(2.a.\frac{a}{-b}=\frac{a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left(a.1\right)}{-\left[-\left(b.1\right)\right]}=\frac{-a}{b}\\ b.\frac{-a}{-b}=\frac{-a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left[-\left(a.1\right)\right]}{-\left[-\left(b.1\right)\right]}=\frac{a}{b}\)
\(3.\frac{3}{-4}=\frac{-3}{4}\\ \frac{-5}{-7}=\frac{5}{7}\\ \frac{2}{-9}=\frac{-2}{9}\\ \frac{-11}{-10}=\frac{11}{10}\)
\(4.\frac{3}{6}=\frac{2}{4}\\ \frac{6}{3}=\frac{4}{2}\\ \frac{2}{3}=\frac{4}{6}\\ \frac{3}{2}=\frac{6}{4}\)
Bài 1:
a, \(\frac{x}{7}\)=\(\frac{6}{21}\)⇒x.21=6.7⇒x.21=42⇒x=2
b,\(\frac{-5}{y}=\frac{20}{28}\)⇒-5.28= 20.y⇒-140=20.y⇒y =-7
Bài 2:
a, \(\frac{a}{-b}\)= \(\frac{a.\left(-1\right)}{-b.\left(-1\right)}\)=\(\frac{-a}{b}\)
b, \(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)
Bài 3:
1,\(\frac{3}{-4}=\frac{-3}{4}\)
2,\(\frac{-5}{-7}=\frac{5}{7}\)
3,\(\frac{2}{-9}=\frac{-2}{9}\)
4,\(\frac{-11}{-10}=\frac{11}{10}\)
Bài 4 :
\(\frac{3}{6}=\frac{2}{4}\) ;
\(\frac{6}{3}=\frac{4}{2}\);
\(\frac{3}{2}=\frac{6}{4}\);
\(\frac{2}{3}=\frac{4}{6}\).
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
a)
\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{50.51}\)
\(\Rightarrow A>\frac{1}{3^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{51}=\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)
Dễ thấy 1/9 > 1/51
=> 1/9 - 1/51 > 0
\(\Rightarrow a>\frac{1}{4}+\frac{1}{9}-\frac{1}{51}>\frac{1}{4}\)
=> A>1/4
Do \(\frac{a}{b}< 1\)=> a < b
=> a.m < b.m
=> a.m + a.b < b.m + a.b
=> a.(b + m) < b.(a + m)
=> \(\frac{a}{b}< \frac{a+m}{b+m}\)
Bài 4:
a)Ta có: B= 23!+19!−15!
B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15
Vì 11 chia hết cho 11=>23! chia hết cho 11
19!chia hết cho 11
15! chia hết cho 11
Bài 1:
a) \(\frac{a}{5}=\frac{-3}{b}\)
\(\Rightarrow ab=-15\)
Ta có bảng sau:
a | 1 | -1 | 15 | -15 |
b | -15 | 15 | -1 | 1 |
Vậy cặp số \(\left(a;b\right)\) là \(\left(1;-15\right);\left(-1;15\right);\left(15;-1\right);\left(-15;1\right)\)
b) @Nguyễn Huy Thắng
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)
Vậy a = b = c
Bài 1:
a: \(\dfrac{a}{b}=\dfrac{a\cdot\left(-1\right)}{b\cdot\left(-1\right)}=\dfrac{-a}{-b}\)
b: \(\dfrac{a}{-b}=-\dfrac{a}{b}=-\dfrac{a}{b}\)