\(\ne\)0) Chứng tỏ rằng các cặp ph...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(\dfrac{a}{b}=\dfrac{a\cdot\left(-1\right)}{b\cdot\left(-1\right)}=\dfrac{-a}{-b}\)

b: \(\dfrac{a}{-b}=-\dfrac{a}{b}=-\dfrac{a}{b}\)

6 tháng 2 2020

\(1.a.\frac{x}{7}=\frac{6}{21}=\frac{6:3}{21:3}=\frac{2}{7}\Rightarrow x=2\\ b.\frac{-5}{y}=\frac{20}{28}=\frac{20:\left(-4\right)}{28:\left(-4\right)}=\frac{-5}{-7}\Rightarrow y=-7\)

\(2.a.\frac{a}{-b}=\frac{a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left(a.1\right)}{-\left[-\left(b.1\right)\right]}=\frac{-a}{b}\\ b.\frac{-a}{-b}=\frac{-a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left[-\left(a.1\right)\right]}{-\left[-\left(b.1\right)\right]}=\frac{a}{b}\)

\(3.\frac{3}{-4}=\frac{-3}{4}\\ \frac{-5}{-7}=\frac{5}{7}\\ \frac{2}{-9}=\frac{-2}{9}\\ \frac{-11}{-10}=\frac{11}{10}\)

\(4.\frac{3}{6}=\frac{2}{4}\\ \frac{6}{3}=\frac{4}{2}\\ \frac{2}{3}=\frac{4}{6}\\ \frac{3}{2}=\frac{6}{4}\)

8 tháng 2 2020

Bài 1:

a, \(\frac{x}{7}\)=\(\frac{6}{21}\)⇒x.21=6.7⇒x.21=42⇒x=2

b,\(\frac{-5}{y}=\frac{20}{28}\)⇒-5.28= 20.y⇒-140=20.y⇒y =-7

Bài 2:

a, \(\frac{a}{-b}\)= \(\frac{a.\left(-1\right)}{-b.\left(-1\right)}\)=\(\frac{-a}{b}\)

b, \(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)

Bài 3:

1,\(\frac{3}{-4}=\frac{-3}{4}\)

2,\(\frac{-5}{-7}=\frac{5}{7}\)

3,\(\frac{2}{-9}=\frac{-2}{9}\)

4,\(\frac{-11}{-10}=\frac{11}{10}\)

Bài 4 :

\(\frac{3}{6}=\frac{2}{4}\) ;

\(\frac{6}{3}=\frac{4}{2}\);

\(\frac{3}{2}=\frac{6}{4}\);

\(\frac{2}{3}=\frac{4}{6}\).

6 tháng 2 2017

Ta có

-a/b=a/-b

=>a/-b=-a/b

6 tháng 2 2017

-a/-b=a/b

=>-a/-b=a/b

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

8 tháng 8 2016

a)

\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{50.51}\)

\(\Rightarrow A>\frac{1}{3^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{51}=\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

Dễ thấy 1/9 > 1/51

=> 1/9 - 1/51 > 0

\(\Rightarrow a>\frac{1}{4}+\frac{1}{9}-\frac{1}{51}>\frac{1}{4}\)

=> A>1/4

 

8 tháng 8 2016

Cảm ơn nah

7 tháng 9 2016

Do \(\frac{a}{b}< 1\)=> a < b

=> a.m < b.m

=> a.m + a.b < b.m + a.b

=> a.(b + m) < b.(a + m)

=> \(\frac{a}{b}< \frac{a+m}{b+m}\)

trong tối nay nha huhu

 

1 tháng 11 2018

Bài 4:

a)Ta có: B= 23!+19!−15!

B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15

Vì 11 chia hết cho 11=>23! chia hết cho 11

19!chia hết cho 11

15! chia hết cho 11

1 tháng 11 2018

b)( sẽ dựa vào phần a luôn, dòng này bn ko phải ghi mk giải thích cho bn hiểu)

Vì 10.11=110 chia hết cho 110=>23! chia hết cho 110

19! chia hết cho 110

15! chia hết cho 110

23 tháng 1 2017

Bài 1:

a) \(\frac{a}{5}=\frac{-3}{b}\)

\(\Rightarrow ab=-15\)

Ta có bảng sau:

a 1 -1 15 -15
b -15 15 -1 1

Vậy cặp số \(\left(a;b\right)\)\(\left(1;-15\right);\left(-1;15\right);\left(15;-1\right);\left(-15;1\right)\)

b) @Nguyễn Huy Thắng

Bài 2:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)

Vậy a = b = c

23 tháng 1 2017

nhân chéo xét Ư(21) quá dễ