Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta viết lại phương trình: \(3x^2+5x+(m-2)=0\)
Để pt có hai nghiệm (không nhất thiết phân biệt) thì:
\(\Delta=25-12(m-2)\geq 0\)
\(\Leftrightarrow m\leq \frac{49}{12}\)
Khi đó, áp dụng định lý Viete của pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=-\frac{5}{3}\\ x_1x_2=\frac{m-2}{3}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}x_2+x_2=\frac{-5}{3}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) (thay \(x_1=\frac{1}{3}x_2\) )
\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{-5}{4}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) \(\Rightarrow \frac{m-2}{3}=\frac{1}{3}\left(\frac{-5}{4}\right)^2=\frac{25}{48}\)
\(\Leftrightarrow m=\frac{57}{16}\) (thỏa mãn)
Vậy \(m=\frac{57}{16}\)
TH1: m=1
Pt sẽ là -3x+2=0
hay x=2/3(loại)
TH2: m<>1
\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)\cdot2=9-8\left(m-1\right)=-8m+17\)
Để phương trình có hai nghiệm thì -8m+17>=0
hay m<=17/8
Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=3\)
\(\Leftrightarrow\dfrac{3}{m-1}=3\cdot\dfrac{2}{m-1}=\dfrac{6}{m-1}\)(vô lý)
\(\Delta=9-4m\ge0\Rightarrow m\le\frac{9}{4}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3}{2}\\x_2=-\frac{9}{2}\end{matrix}\right.\)
\(x_1x_2=m\Rightarrow m=\frac{3}{2}.\left(-\frac{9}{2}\right)=-\frac{27}{4}\)
b/ \(\left\{{}\begin{matrix}3x_1+2x_2=20\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=26\\x_2=-29\end{matrix}\right.\)
\(\Rightarrow m=x_1x_2=-29.26=-754\)
c/ \(\left\{{}\begin{matrix}\left(x_1-x_2\right)\left(x_1+x_2\right)=34\\x_1+x_2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=-\frac{34}{3}\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\frac{43}{6}\\x_2=\frac{25}{6}\end{matrix}\right.\) \(\Rightarrow m=-\frac{1075}{36}\)
d/ \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-1\\x_1=-2\end{matrix}\right.\) \(\Rightarrow m=2\)
e/ Giống câu c, bạn tự giải
Lời giải:
a)
Khi $m=2$ phương trình trở thành:
\(x^2-2.2x+2^2-1=0\)
\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow (x-1)(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\)
b)
Để pt có hai nghiệm phân biệt thì:
\(\Delta'=m^2-(m^2-1)>0\Leftrightarrow 1>0\) (luôn đúng với mọi số thực $m$)
Khi đó áp dụng hệ thức Viete có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-1\end{matrix}\right.\)
Do đó: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{2}\)
\(\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{2}\Leftrightarrow \frac{2m}{m^2-1}=\frac{1}{2}\)
\(\Rightarrow m^2-1=4m\Leftrightarrow m^2-4m-1=0\)
\(\Leftrightarrow (m-2)^2=5\Rightarrow \left[\begin{matrix} m=2+\sqrt{5}\\ m=2-\sqrt{5}\end{matrix}\right.\) (đều chọn)
a) đơn giản (bước đệm làm b thôi
b) m thỏa mãn đồng thời hệ \(\left\{{}\begin{matrix}f\left(0\right)\ne0\\\Delta>0\\\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow0-0+m^2-1\ne0\Leftrightarrow m\ne\left\{\pm1\right\}\)
\(\left(2\right)\Leftrightarrow\Delta'_{\left(x\right)}=m^2-m^2+4=4>0\forall m\Rightarrow m\in R\backslash\left\{\pm1\right\}\)
\(\left(3\right)\Leftrightarrow\dfrac{x_2+x_1}{x_1.x_2}=\dfrac{1}{2}\)
với đk m<=> \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m^2-1\\2\left(x_1+x_2\right)=x_1.x_2\end{matrix}\right.\)\(\Leftrightarrow m^2-4m-1=0\)
\(\Delta'_{\left(m\right)}=2^2+1=5\Rightarrow m=2\pm\sqrt{5}\) thỏa mãn đk m nhận
Lời giải:
Để pt có hai nghiệm phân biệt thì \(\Delta'=(m-1)^2-(m^2-3)>0\)
\(\Leftrightarrow 4-2m>0\Leftrightarrow m< 2\)
Khi đó áp dụng định lý Viete về pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3\end{matrix}\right.(*)\)
a) \(x_1-x_2=2\Rightarrow (x_1-x_2)^2=4\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow x_1^2+x_2^2+2x_1x_2-4x_1x_2=4\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4\)
\(\Leftrightarrow 4(m-1)^2-4(m^2-3)=4\)
\(\Leftrightarrow 8m=12\Leftrightarrow m=\frac{3}{2}\) (thỏa mãn)
b) \(x_1x_2-x_1-x_2=11\)
\(\Leftrightarrow x_1x_2-(x_1+x_2)=11\)
\(\Leftrightarrow m^2-3-2(m-1)=11\)
\(\Leftrightarrow m^2-2m-12=0\Leftrightarrow \left[\begin{matrix} m=1+\sqrt{13}\\ m=1-\sqrt{13}\end{matrix}\right.\)
Vì \(m<2\Rightarrow m=1-\sqrt{13}\)
c)Ta có: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_1+x_2+2=2m\\ x_1x_2+3=m^2\end{matrix}\right.\)
Suy ra \( (x_1+x_2+2)^2=4(x_1x_2+3)(=4m^2)\)
\(\Leftrightarrow x_1^2+x_2^2+4+2x_1x_2+4(x_1+x_2)=4x_1x_2+12\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2+4(x_1+x_2)-8=0\)
Đây chính là biểu thức (không phụ thuộc m) cần tìm.