\(\sqrt[3]{2x+3}=x^3+3x^2+2x\) có nghiệm dạng \(x=\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 4 2020

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow x^3-1+2x-1-\sqrt{3x-2}+x+1-\sqrt{x+3}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\frac{4x^2-7x+3}{2x-1+\sqrt{3x-2}}+\frac{x^2+x-2}{x+1+\sqrt{x+3}}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\frac{\left(x-1\right)\left(4x-3\right)}{2x-1+\sqrt{3x-2}}+\frac{\left(x-1\right)\left(x+2\right)}{x+1+\sqrt{x+3}}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1+\frac{4x-3}{2x-1+\sqrt{3x-2}}+\frac{x+2}{x+1+\sqrt{x+3}}\right)\le0\)

\(\Leftrightarrow x-1\le0\) (ngoặc đằng sau luôn dương)

\(\Rightarrow x\le1\Rightarrow\frac{2}{3}\le x\le1\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=1\end{matrix}\right.\) \(\Rightarrow a+b=5\)

25 tháng 5 2021

ĐK: x>0

\(bpt\Leftrightarrow\hept{\begin{cases}x\ge0\\6x^2-13x-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=3;x=\frac{-5}{6}\end{cases}\Leftrightarrow}x=3\Rightarrow y=\pm2}\)

\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{\left(\sqrt{2x+17}-\sqrt{2x+1}\right)\left(\sqrt{2x+17}+\sqrt{2x+1}\right)}{\sqrt{2x+17}+\sqrt{2x+1}}\)

\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{16}{\sqrt{2x+17}+\sqrt{2x+1}}\)

\(\Leftrightarrow\sqrt{2x+17}+\sqrt{2x+1}\ge4\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{2x+17}+\sqrt{2x+1}\right)^2\ge16x\)

\(\Leftrightarrow\sqrt{\left(2x+17\right)\left(2x+1\right)}\ge6x-9\)

\(\Leftrightarrow x\in\left\{\frac{3}{2},4\right\}\)

Theo đk, ta có tập nghiệm của bpt là S= \(\left\{0;4\right\}\)

25 tháng 5 2021

bạn ơi sao lại có dấu mở ngoặc kép là sao

6 tháng 1 2020

bạn chia 2 vế pt cho x bình nhé

18 tháng 4 2016

\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)

Điều kiện \(x>0\)

Chia cả 2 vế của phương trình (1) cho \(x\) ta được :

\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)

\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)

                             \(\Leftrightarrow y^2=4x+2\)

Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)

Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)

Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)

Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)

 

NV
16 tháng 8 2020

8.

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)

\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)

\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)

\(\Leftrightarrow x=6\)

NV
16 tháng 8 2020

6.

ĐKXD: ...

\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)

\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow x=3\)

7.

\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)

\(\Rightarrow a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)

\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)

Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)

5 tháng 7 2021

\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)

Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)

Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)

Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)

\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)