Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
(a) phân giác trong y=-2 , phân giác ngoài x=2
(b) x=5
(c)x+15y+28=0
Bài 2:
Phương trình (d) cần tìm là -3(x-1)+5(y-3)=0
=>-3x+3+5y-15=0
=>-3x+5y-12=0
=>3x-5y+12=0
Bài 3:
vecto chỉ phương là \(\overrightarrow{v}=\left(-3;5\right)\)
=>VTPT là (5;3)
Phương trình đường thẳng là:
5(x-5)+3(y-3)=0
=>5x-25+3y-9=0
=>5x+3y-34=0
Giả sử đường thẳng \(\Delta\) cần tìm có vec tơ pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) khi đó \(\Delta\)
a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)
Đáp án C
Đường thẳng ( d) đi qua A( 2; 5) và nhận vecto n → ( a ; b ) làm VTPT có phương trình:
a( x- 2)+ b( y- 5) =0 hay ax+ by -2a- 5b= 0.
Khi đó:
Suy ra : - 24ab+ 7b2= 0
Nên b= 0 hoặc 7b= 24a
+ nếu b= 0; chọn a= 1 thì đường thẳng ( d) có phương trình là: x= 2.
+ Nếu 7b= 24a thì chọn a= 7 và b= 24 thì đường thẳng ( d) là 7x+ 24y – 134= 0