Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt
\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)
PT đã cho tương đương với:
\(ma^x+\frac{1}{a^x}=4\)
\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)
Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0
\(\Delta'=4-m>0\Leftrightarrow m< 4\)
Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)
\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)
Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :
\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)
\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)
\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)
\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)
Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)
\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)
\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)
Câu 2:
Nếu \(1> x>0\)
\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)
\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)
\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)
Nếu \(x>1\)
\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)
\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)
\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)
Đặt \(\left\{{}\begin{matrix}u=x^2-2x+m\\v=x^2+2\end{matrix}\right.\) \(\Rightarrow f'\left(x\right)=\frac{u'v-uv'}{v^2}=0\)
\(\Leftrightarrow u'v=uv'\Leftrightarrow\frac{u}{v}=\frac{u'}{v'}\)
\(\Rightarrow f\left(x_1\right)=\frac{u\left(x_1\right)}{v\left(x_1\right)}=\frac{u'\left(x_1\right)}{v'\left(x_1\right)}=\frac{2x_1-2}{2x_1}=1-\frac{1}{x_1}\)
\(f\left(x_2\right)=\frac{u'\left(x_2\right)}{v'\left(x_2\right)}=\frac{2x_2-2}{2x_2}=1-\frac{1}{x_2}\)
\(\Rightarrow k=\frac{1-\frac{1}{x_1}-1+\frac{1}{x_2}}{x_1-x_2}=\frac{1}{x_1x_2}\)
Mặt khác \(x_1;x_2\) là nghiệm của
\(f'\left(x\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+2\right)-2x\left(x^2-2x+m\right)=2x^2-2\left(m-2\right)x-4=0\)
\(\Rightarrow x_1x_2=-\frac{4}{2}=-2\)
\(\Rightarrow k=-\frac{1}{2}\)
\(log_3x-log_5x.log_2x=0\)
\(\Leftrightarrow\frac{log_2x}{log_23}-\frac{log_2x}{log_25}.log_2x=0\)
\(\Leftrightarrow log_2x\left(\frac{1}{log_23}-\frac{log_2x}{log_25}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}log_2x=0\\\frac{1}{log_23}=\frac{log_2x}{log_25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}log_2x=0\\log_2x=\frac{log_25}{log_23}=log_35\end{matrix}\right.\)
\(\Rightarrow T=log_2\left(x_1x_2\right)=log_2x_1+log_2x_2=0+log_35=log_35\)