Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BC < BD mà C, D nằm cùng phía so với B ⇒ C nằm giữa B và D.
(Bạn tự vẽ hình giùm)
a/ Ta có \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)
=> 180o - \(\widehat{ABC}\)= 180o - \(\widehat{ACB}\)
=> \(\widehat{ABD}=\widehat{ACE}\)
\(\Delta ABD\)và \(\Delta ACE\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD = CE (gt)
=> \(\Delta ABD\)= \(\Delta ACE\)(c - g - c) => AD = AE (hai cạnh tương ứng) => \(\Delta ADE\)cân tại A (đpcm)
b/ Mình xin chỉnh lại đề: Kẻ \(BH\perp AD\); \(CK\perp AE\). Chứng minh rằng: AH = AK.
\(\Delta BHD\)vuông và \(\Delta CKE\)vuông có: BD = CE (gt)
\(\widehat{D}=\widehat{E}\)(\(\Delta ADE\)cân tại A)
=> \(\Delta BHD\)vuông = \(\Delta CKE\)vuông (cạnh huyền - góc nhọn) => HD = KE (hai cạnh tương ứng)
và AD = AE (\(\Delta ADE\)cân tại A)
=> AD - HD = AE - KE
=> AH = AK (đpcm)
A B C D E I F
Kẻ ID \(\perp\) AB, IE \(\perp\) BC, IF \(\perp\) AC
Xét hai tam giác vuông IBD và IBE có:
IB: cạnh chung
\(\widehat{DBI}=\widehat{EBI}\) (gt)
Vậy: \(\Delta IBD=\Delta IBE\left(ch-gn\right)\)
\(\Rightarrow\) ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông ICF và ICE có:
IC: cạnh chung
\(\widehat{FCI}=\widehat{ECI}\) (gt)
Vậy: \(\Delta ICF=\Delta ICE\left(ch-gn\right)\)
\(\Rightarrow\) IF = IE (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông AID và AIF có:
AI: cạnh chung
ID = IF (cmt)
Vậy: \(\Delta AID=\Delta AIF\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAD}=\widehat{IAF}\) (hai góc tương ứng)
Do đó: AI là tia phân giác của \(\widehat{A}\).
http://olm.vn/hoi-dap/question/107283.html
bạn vào đây mjk giải ở đây
x t y x' t' y'
xét các tia x'o;ox và y'o;oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
ta có: góc xoy + góc xoy' = góc toy' + góc yot = 1800
<=> góc toy' + góc y'ot' = góc tot' = 1800
=> ot và ot' là hài tia đối nhau
Trong ΔABC, ta có:
∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)
⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o
+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B
Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C
Do đó:
Trong ΔBIC, ta có:
∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o
Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K
Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o
Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)
⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o
∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)
Xét ΔBIE và ΔBIK, ta có
∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)
BI cạnhchung
∠(I1) = ∠(I2) = 60o
Suy ra: ΔBIE = ΔBIK(g.c.g)
IK = IE (hai cạnh tương ứng) (1)
Xét ΔCIK và ΔCID, ta có
∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).
CI cạnh chung
∠(I3) = ∠(I4) = 60o
Suy ra: ΔCIK = ΔCID(g.c.g)
IK = ID (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: IE = ID