Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)
\(=x^2+x+1-x+1=x^2+2\)
\(x^2+y^2=0\)
Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)
(Dấu "="\(\Leftrightarrow x=y=0\))
1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)
2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)
3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)
4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)
1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm
2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm
3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm
4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm
B = (x-1)(2x+1) - (x2-2x-1)
B = 2x2+x-2x-1-x2-2x-1 = x2-3x-2
B = x2+x-4x-2 = x(x+1) - 4(x+1)
B = (x+1)(x-4)
\(A=2x\left(x-2\right)-x\left(2x-3\right)\\ =2x^2-4x-2x^2+3x\\ =-x\\ B=\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\\ =x\left(2x+1\right)-\left(2x+1\right)-x^2+2x+1\\ =2x^2+x-2x-1-x^2+2x+1\\ =x^2+x\\ C=\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\\ =x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)-x^3\\ =x^3-x^2y+xy^2+x^2y-xy^2+y^3-x^3\\ =y^3\)
\(D=\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\\ =x\left(12x-3\right)+4\left(12x-3\right)-2x^2-7x\\ =12x^2-3x+48x-12-2x^2-7x\\ =10x^2+38x-12\\ E=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\\ =2x\left(4x^2-2xy+y^2\right)+y\left(4x^2-2xy+y^2\right)\\ =8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\\ =8x^3+y^3\)
4x2+y2+2xy=4x+4y
=>(x2+2xy+y2)+3x2+y2-4x-4y=0
=> (x+y)2+3\(\left(x^2-\dfrac{4}{3}x\right)+\left(y^2-4y\right)=0\)
=> (x+y)2+3\(\left(x^2-2.\dfrac{4}{6}+\dfrac{16}{36}-\dfrac{16}{36}\right)+\left(y^2-4y+4\right)-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2-\dfrac{4}{3}+\left(y-2\right)^2-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2+\left(y-2\right)^2=\dfrac{16}{3}\)