\(\widehat{A}=\widehat{D}=90^o,AB=AD=2cm;DC=4cm\)

Tính c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017
Kẻ đường cao BH (H thuộc CD). Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau). Suy ra BH = AB = 2 Trong tam giác vuông BHC có BH = \(\dfrac{1}{2}\) BC nên tam giác BHC là nửa tam giác đều. Suy ra \(\widehat{HBC}=60^o\)\(\widehat{C}=30^o\) Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
25 tháng 6 2017

đăng trùng

20 tháng 6 2017
Kẻ đường cao BH (H thuộc CD).
Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau).
Suy ra BH = AB = 2
Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều.
Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\)
Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
29 tháng 6 2017

Hình thang

16 tháng 1 2020

A B C D 2cm E 4cm 45

Kẻ \(BE\perp CD\)

Xét \(\Delta BEC\)vuông tại E có :

\(\widehat{BEC}=90^o\) ( theo cách vẽ )

Mà \(\widehat{C}=45^o\)(gt)

\(\Rightarrow\Delta BEC\)vuông cân tại E

\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )

Hay \(BE\perp DC\)(1)

Vì \(\widehat{D}=90^o\left(gt\right)\)

\(\Rightarrow AD\perp DC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )

Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)

\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)

 \(\Rightarrow AB=DE=2cm\)

Ta có \(EC=CD-BE\)

\(\Rightarrow EC=4-2\)

\(\Rightarrow EC=2cm\)

Mà BE = EC (cmt)

\(\Rightarrow BE=2cm\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)

Vậy \(S_{ABCD}=6\left(cm^2\right)\)

Chúc bạn học tốt !!!

25 tháng 6 2017

kẻ BH vuông góc với CD

ta có ^D +^H =180o (^D =90o, ^H= 90o)

mà 2 góc này nằm ở vị trí trong cùng phía => AD//BH(2 cạnh bên)

=> AD =BH =2cm , AB =DH = 2cm

ta có DC = 4cm và DH+HC =DC

mà DH =2cm

=> HC =2cm

ta có tam giác BHC vuông cân tại H ( BH =CH ,^H = 90o)

=> ^C =^B ( 2 góc đáy ) lại có ^C+^B+^H =180o(tổng 3 góc tam giác)

=> ^C =^B = 45o

=> ^B = 135o

7 tháng 7 2018

Hình tự vẽ nhé

a, 

Gọi H là chân đường cao hạ từ C, ABCH là hình vuông

\(\Rightarrow CH=BC=\frac{AD}{2}\)

Tam giác CDH có:

\(\widehat{CHD=90^o;CH=HD}\)

\(\Rightarrow CHD\)là tam giác vuông cân tại H

\(\Rightarrow\widehat{CDH}=\widehat{HCD}=45^o\)

\(\Rightarrow\widehat{BCD}=90^o+45^o=135^o\)

b, Có CH = AH

\(\Rightarrow\)Tam giác AHC vuông cân tại H. Do đó \(\widehat{ACH}=45^o\)

Mà \(\widehat{HCD}=45^o\)

\(\Rightarrow\widehat{ACD}=45^o+45^o=90^o\)

Vậy \(AC\perp CD\)( đpcm )

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)

           

Vì tứ giác ABCD có AB //CD 

=> ABCD là hình thang 

=> A+D = 180 độ

Mà A = 40 + D 

=> 40 + D + D = 180 độ

=> 2D + 40 = 180 độ

=> 2D = 140 độ

=> D = 70 độ

=> A = 180 - 70 = 110 độ

Mà B + C = 180 độ

Mà B = 2C

=> 2C + C = 180 độ

=> 3C = 180 độ

=> C = 60 độ

=> B = 180 - 60 = 120 độ