K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MT
5
Các câu hỏi dưới đây có thể giống với câu hỏi trên
S
2
31 tháng 1 2018
do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1
Ta có:n^2+2018=3k+1+2018=3k+2019
do 3k chia hết cho 3,2019chia hết cho 3
nên 3k+2019 là hợp số hay n^2+2018 là hợp số
Vậy không có số nguyên tố n nào thỏa mãn đề bài
8 tháng 3 2018
Vì n là số nguyen tố lon hon 3 nên n co dang : 3k+1;3k+2
TH1 : n=3k+1
=> n^2+2018=(3k+1)(3k+1)+2018=9k^2+3k+3k+1+2018=9k^2+6k+2019
TH2 : n=3k+2
=> n^2+2018=(3k+2)(3k+2)+2018=9k^2+6k+6k+4+2018=9k^2+12k+2022 chia het cho 3
Vay n^2+2018 la hop so
8 tháng 3 2018
n là số nguyên tố > 3
=> n ko chia hết cho 3
=> n^2 chia 3 dư 1
=> n^2+2019 chia hết cho 3
Mà n^2+2019 > 3 => n^2+2019 là hợp số
Tk mk nha
bạn ghi nhầm đề
Hiệu mà bạn