K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

(x2+x+1)(x2+x+2)=12

=>x=-2 hoặc 1

x(x+1)(x2+x+1)=42

=>x=-3 hoặc 2

(x2+x+1)2= 3(x4+x2+1)

<=>3(x4+x2+1)=3(x2-x+1)(x2+x+1)

=>(x2+x+1)2=3(x2-x+1)(x2+x+1)

=>x=1

31 tháng 5 2018

3) \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

S=\(\left\{6;1\right\}\)

\(\)

12 tháng 8 2018

1, x3+ 6x2+11x+6

= x3 + 2x2 + 4x2 + 8x + 3x + 6 

= x2(x + 2) + 4x(x + 2) + 3(x + 2)

= (x + 2)(x2 + 4x + 3)

2, x4+3x3-7x2-27x-18

= x4 + 3x3 - 9x2 + 2x2 - 27x -18

= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)

= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)

= (x2 - 9)(x2 + 3x + 2)

= (x + 3)(x - 3)(x2 + 3x + 2)

3, x3-8x2+x+42

= x3 - 7x2 - x2 + 7x - 6x + 42

= (x3 - 7x2) - (x2 - 7x) - (6x - 42)

= x2(x - 7) - x(x - 7) - 6(x - 7)

= (x - 7)(x2 - x - 6) 

4, x4+5x3-7x2-41x-30 

= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30

= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)

= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)

= (x3 + 4x2 - 11x - 30)(x + 1)

5, x5+x-1

= x- x+ x+ x- x+ x- x2+ x -1 

= x3(x- x + 1)+ x2(x- x + 1)- (x- x + 1) 

= (x- x + 1)(x+ x- 1)

6, x5-x4-1

= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1 

= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)

= (x2 - x + 1)(x3 - x - 1)

12 tháng 8 2018

1, x 3+ 6x 2+11x+6

= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6

= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿

= ﴾x + 2﴿﴾x 2 + 4x + 3﴿

2, x 4+3x 3‐7x 2‐27x‐18

= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18

= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿

= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿

= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿

=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿

3, x 3‐8x 2+x+42

= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42

= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿

= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿

= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿

4, x 4+5x 3‐7x 2‐41x‐30

= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30

= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿

= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿

= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿

5, x 5+x‐1

= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1

= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿

= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1

= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1

= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿

= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿ 

15 tháng 2 2017

Câu trên làm (a) câu này làm (b)

b)

\(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)

đặt: \(x^2+x-2=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=t\)

\(t\left(t-1\right)=12\Leftrightarrow t^2-t+\frac{1}{4}=12+\frac{1}{4}=\frac{49}{4}\)

\(\left(t-\frac{1}{2}\right)^2=\left(\frac{7}{2}\right)^2\Rightarrow\left[\begin{matrix}t=\frac{1-7}{2}=-3\left(loai\right)\\t=\frac{1+7}{2}=4\end{matrix}\right.\)

\(t=4\Leftrightarrow\left(x+\frac{1}{2}\right)^2=4+\frac{9}{4}=\frac{25}{4}\Rightarrow\left[\begin{matrix}x=\frac{-1-5}{2}=-3\\x=\frac{-1+5}{2}=2\end{matrix}\right.\)

15 tháng 2 2017

Mấy bài này dễ mà ,có điều bạn ra nhiều bài quá làm biếng chẳng muốn làm

30 tháng 10 2016

\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)

Đặt \(x^2+x=t\), ta có:

\(A=t^2-14t+24\)

\(=t^2-2t-12t+24\)

\(=t\left(t-2\right)-12\left(t-2\right)\)

\(=\left(t-2\right)\left(t-12\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)

\(B=\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=t\), ta có:

\(B=t^2+4t-12\)

\(=t^2+6t-2t-12\)

\(=t\left(t+6\right)-2\left(t+6\right)\)

\(=\left(t+6\right)\left(t-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+4=t\), ta có:

\(C=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

\(=\left(x^2+5x+4+1\right)^2\)

\(=\left(x^2+5x+5\right)^2\)

\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=t\), ta có:

\(D=t\left(t+8\right)+15\)

\(=t^2+8t+15\)

\(=t^2+3t+5t+15\)

\(=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+3\right)\left(t+5\right)\)

\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\), ta có:

\(F=t\left(t+1\right)-12\)

\(=t^2+t-12\)

\(=t^2+4t-3t-12\)

\(=t\left(t+4\right)-3\left(t+4\right)\)

\(=\left(t+4\right)\left(t-3\right)\)

\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(E=x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

 

30 tháng 10 2016

siêng phết