Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{5}{8}=\frac{2005}{3208}\)
\(\left(\frac{289}{401}\right)^{10}=\frac{289^{10}}{401^{10}}=\frac{289}{401}=\frac{2312}{3208}\)
Vì: \(\frac{2005}{3208}\)<\(\frac{2312}{3208}\)
Vậy:\(\frac{5}{8}\)<\(\left(\frac{289}{401}\right)^{10}\)
\(A=1+3^2+3^3+...+3^{29}\)
\(3A=1+\left(3^2+3^3+...+3^{29}\right).3\)
\(3A=1+3^3+3^4+...+3^{30}\)
\(3A-A=1+\left(3^3+3^4+...+3^{30}\right)-\)\(\left(3^2+3^3+...+3^{29}\right)\)
\(2A=1+3^{30}-1\)
\(\Rightarrow2A=3^{30}\)
\(\Rightarrow A=3^{30}:2\)
Vì\(3^{30}:2< 3^{30}\Rightarrow A< B\)
MK KHÔNG BIẾT ĐÚNG HAY SAI NHA !!!
a, vì 199<200;201>200 nên hai kq liền nhau
Mà 199x201 tận cùng là 9 200.200 tận cùng là 0 => A<B
tương tự b
#)Giải :
\(A=\frac{20^{18}+1}{20^{19}+1}\)và \(B=\frac{20^{17}+1}{20^{18}+1}\)
\(A=\frac{20^{18}+1}{20^{18+1}+1}\)và \(B=\frac{20^{17}+1}{20^{17+1}+1}\)
\(A=\frac{1}{20+1}\)và \(B=\frac{1}{20+1}\)
\(A=\frac{1}{21}\)và \(B=\frac{1}{21}\)
\(\Rightarrow A=B\)
#~Will~be~Pens~#
A>2018 +1+19/2019 +1+19
A>2018+20/2019+20
A>20(2017+1)/20(2018+1)
A>2017+1/2018+1
=>A>B
Chúc bạn học tốt
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
Ta có : 3200 = (32)100 = 9100
2300 = ( 23 )100 = 8100
Vì 8<9 => 3200 .>2300
Ta có:
\(21^{15}=\left(7.3\right)^{15}=7^{15}.3^{15}\)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\)
Vì: \(3^{15}=3^{15}\) và \(7^{16}>7^{15}\) nên:
\(7^{15}.3^{15}< 3^{15}.7^{16}\)
Hay:\(21^{15}< 27^5.49^8\)
Vậy ...
Ta có :
\(21^{15}=7^{15}.3^{15}\)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\)
Vì \(7^{15}< 7^{16}\)
\(21^{15}< 27^5.49^8\)
387/-389 => -387/389 và -387/389> -389/391 nhé