Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(10\equiv1\left(mod9\right)\)
\(\Rightarrow10^{10}\equiv1\left(mod9\right)\)
\(\Rightarrow10^{10}-1\equiv0\left(mod9\right)\)
\(\Rightarrow10^{10}-1⋮9\left(đpcm\right)\)
Hok tốt !!!!!!!!
Bài làm:
Ta có: \(10\equiv1\left(mod.9\right)\)
=> \(10^{10}\equiv1\left(mod.9\right)\)
<=> \(10^{10}-1\equiv0\left(mod.9\right)\)
=> 1010 - 1 chia hết cho 9
\(S=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)
\(=15+...+2^{96}.15\)
\(=15.\left(1+...+2^{96}\right)⋮15\)
\(\Rightarrow\) \(S⋮15\)
A) 102016 + 8 chia hết cho 9
Ta có : 10000....0 + 8
= 1000...8
Vậy ( 1 + 0 + 0 + 0 + ...+ 0 + 8 ) = 9 chia hết cho 9.
B) 111...111 chia hết cho 9 ( với điều kiện có 27 chữ số 1)
Ta có : 1 + 1 + 1 + ... + 1 + 1 +1 = ( 27 : 2 ) x 2
= 13,5 x 2
= 27
Ta thấy : 27 chia hết cho 9 nên 111...111 chia hết cho 9
Ta có : 243 chia hết cho 9 => 243a chia hết cho 9 (a thuộc N)
657 chia hết cho 9 => 657b chia hết cho 9 (b thuộc N)
Từ 2 điều trên => 243a + 657b chia hết cho 9 (a, b thuộc N)
Có \(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=2\left(1+2+...+2^{59}\right)⋮2\)(1)
Lại có : \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{59}\right)⋮3\)(2)
Lại có :\(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=7\left(2+...+2^{58}\right)⋮7\)(3)
Từ (1) và (3) \(\Rightarrow A⋮\left(2.7\right)=14\)(4)
Từ(1);(2);(3);(4) \(\Rightarrow A⋮2;3;7;14\)
b) \(69^2-69.5\)
= 69 . 69 -69 . 5
= 69 . (69 - 5)
=69 . 64
Vì 64 \(⋮\)32 nên 69 . 64 hay \(69^2\)- 69.5 \(⋮\)32
73=343 đồng dư với 1(mod 9)
=>(73)6=718 đồng dư với 1(mod 9)
=>718=9k+1
=>B=9k+1+18.3-1=9k+18.3=9(k+2.3) chia hết cho 9
=>đpcm
Mình chỉ chứng tỏ đc nó chia hết cho 9 thôi
Ta có:
=10.10.10.....10 + 17 chia hết cho 9
=1000000...00 + 17 chia hết cho 9
=1000000...017 chia hết cho 9
=1+0+0+0+...+0+1+7chia hết cho 9
=9 chia hết cho 9
Vậy nó chia hết cho 9
K mình nha