Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 2 2 + 1 3 2 + 1 4 2 + ⋯ + 1 202 4 2 S= 2 2 1 + 3 2 1 + 4 2 1 +⋯+ 2024 2 1 +, Ta thấy: 1 2 2 < 1 1.2 2 2 1 < 1.2 1 1 3 2 < 1 2.3 3 2 1 < 2.3 1 1 4 2 < 1 3.4 4 2 1 < 3.4 1 . . . ... 1 202 4 2 < 1 2023.2024 2024 2 1 < 2023.2024 1 Suy ra: 1 2 2 + 1 3 2 + 1 4 2 + . . . + 1 202 4 2 2 2 1 + 3 2 1 + 4 2 1 +...+ 2024 2 1 < 1 1.2 + 1 2.3 + 1 3.4 + ⋯ + 1 2023.2024 < 1.2 1 + 2.3 1 + 3.4 1 +⋯+ 2023.2024 1 = 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + ⋯ + 1 2023 − 1 2024 =1− 2 1 + 2 1 − 3 1 + 3 1 − 4 1 +⋯+ 2023 1 − 2024 1 = 1 − 1 2024 < 1 =1− 2024 1 <1 ⇒ S < 1 ⇒S<1 (1) +, Lại có: 1 2 2 > 0 2 2 1 >0 1 3 2 > 0 3 2 1 >0 1 4 2 > 0 4 2 1 >0 . . . ... 1 202 4 2 > 0 2024 2 1 >0 Suy ra: 1 2 2 + 1 3 2 + 1 4 2 + . . . + 1 202 4 2 > 0 2 2 1 + 3 2 1 + 4 2 1 +...+ 2024 2 1 >0 ⇒ S > 0 ⇒S>0 (2) Từ (1) và (2) ⇒ 0 < S < 1 ⇒0<S<1 ⇒ ⇒ S không phải là số tự nhiên bn áp dụng theo cách này nhé
vote cho mình vs!!!
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{16}\)
\(\Leftrightarrow A=\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{16}\right)+\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{15}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{4}+...\frac{1}{16}=B\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{3}...+\frac{1}{8}\)
\(2B-B=B=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
Ta có:
\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{15}\)
\(A=\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\right).2+1+\frac{1}{9}+\frac{1}{11}+...+\frac{1}{15}\)
Tính A ra rồi chứng minh nó không phải phân số.
Theo đề bài thì A không phải là số tự nhiên suy ra A<1. Ta có
1/4+1/9+1/16+1/25+...+1/100
=1/2^2+1/3^2+1/4^2+1/5^2+...+1/10^2
=1/2x2+1/3x3+1/4x4+1/5x5+...+1/10x10<1/1x2+1/2x3+1/3x4+1/4x5+...+1/9x10
=>A<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
=>A<1/1-1/10
=>A<9/10
Vì 9/10<1=>A<1
Vậy A không phải số tự nhiên
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Ta có:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
=>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) không phải số tự nhiên
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)không phải số tự nhiên