K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

C

7 tháng 11 2021

c

25 tháng 12 2019

Bình phương của hiệu hai biểu thức bằng tổng của bình phương biểu thức thứ nhất và bình phương biểu thức thứ hai, sau đó trừ đi hai lần tích hai biểu thức đó

12 tháng 9 2017

\(a^2+b^2\) = (a+b)\(^2\) - 2ab

ta có

(a+b)\(^2\) - 2ab

= a\(^2\) + 2ab + b\(^2\) - 2ab

= a\(^2\) + b\(^2\) ( đpcm)

17 tháng 9 2018

Mấy cái này ở trong sách có hết mà bạn :>

6.

?1

(a + b) (a2 - ab + b2)

= a3 - a2b + ab2 + a2b - ab2 +b3

= a3 - b3

?2 HĐT số 6: Lập phương của 1 tổng

Lập phương của 1 tổng bằng lập phương số thứ nhất cộng 3 lần tích bình phương số thứ nhất với số thứ hai cộng 3 lần tích số thứ nhất với bình phương số thứ hai cộng lập phương số thứ ba.

7.

?3

(a - b)(a2 + ab +b2)

= a3 + a2b + ab2 - a2b - ab2 - b3

= a3 - b3

?4 HĐT số 7: Lập phương của 1 hiệu:

Lập phương của 1 hiệu bằng lập phương số thứ nhất trừ 3 lần tích bình phương số thứ nhất với số thứ hai cộng 3 lần tích số thứ nhất với bình phương số thứ hai trừ lập phương số thứ ba.

_Moonlight_

12 tháng 2 2016
ban chat cua no thi giong nhau ca thui nhung lm cac cach khac nhau de de dang bien doi trong tung bai toan(xl vi ko co pkan mem go TV)
31 tháng 5 2016

\(\left(A-B\right)^2+4AB=A^2-2AB+B^2+4AB=\)\(A^2+2AB+B^2\)

Bản chất của chúng tương đương nhau , 1 số trường hợp dùng dẳng thức trên nhằm mục đích làm xuất hiện nhân tử chung ....

17 tháng 7 2017

là biến nó thành các hằng đẳng thức ak bn

24 tháng 4 2019

a,\(x^2+2ab+b^2=\left(a+b\right)^2\)

b,\(x^2-2ab+b^2=\left(a-b\right)^2\)

2 tháng 9 2020

Bài 5 là quá kiểu hiển nhiên roài phá ra là xong mà :))))))

Bài 6:

\(A=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\) 

\(B=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

\(C=\left(2x-7\right)^2=\left(2.2-7\right)^2=\left(4-7\right)^2=\left(-3\right)^2=9\)

Bài 1:

a) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)(Đpcm)

b) \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)(Đpcm)

Bài 2:

a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)

b)\(25x^2-30x+9=\left(5x\right)^2-2.5.3x+3^2=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

c)\(4x^2-28x+49=\left(2x\right)^2-2.2.7x+7^2=\left(2x-7\right)^2=\left(2.4-7\right)^2=1^2\)

19 tháng 6 2017

Ta có:

\(VP=4p\left(p-a\right)=2p.2p-2a.2p\)(1)

Thay \(a+b+c=2p\) vào (1) ta có:

\(\left(a+b+c\right)^2-2a.\left(a+b+c\right)\)

\(=a^2+b^2+c^2+2ab+2ac+2bc-2a^2-2ab-2ac\)

\(=-a^2+b^2+c^2+2bc=VT\)

Vậy \(2ab+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

Chúc bạn học tốt!!!

19 tháng 6 2017

Ta có:a+b+c=2p=>b+c=2p-a=>b+c-a=2p-2a

Ta lại có:4p(p-a)=2p(2p-2a)=2(a+b+c)(b+c-a)=ab+ac-a2+b2+bc-ab+bc+c2-ac

=2ab+b2+c2-a2(đpcm)

14 tháng 12 2018

Hiệu của bình phương hai biểu thức bằng tích của tổng hai biểu thức và hiệu hai biểu thức.