Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định lí: Mỗi đa giác đều có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.
Gọi n, a là số cạnh của đa giác và độ dài mỗi cạnh của đa giác đó thì
\(\frac{n\left(n-3\right)}{2}=90\)
\(\Rightarrow n=15\)
Ta có \(\frac{S_1}{S_2}=\frac{r^2\times3,14}{R^2\times3,14}\)
\(=\frac{\left(\frac{a}{2\tan\frac{\pi}{n}}\right)^2\times3,14}{\left(\frac{a}{2\sin\frac{\pi}{n}}\right)^2\times3,14}=\frac{\sin^2\left(12\right)}{\tan^2\left(12\right)}=0,957\)
Sửa đề: Hai đường cao BN,CK
a: góc AKH+góc ANH=180 độ
=>AKHN nội tiếp
Tâm là trung điểm của AH
b: Xet ΔANB vuông tại N và ΔAKC vuông tại K có
góc A chung
=>ΔANB đồng dạng với ΔAKC
=>NB/KC=AN/AK
=>NB*AK=AN*KC
c: góc BKC=góc BNC=90 độ
=>BKNC nội tiếp
d: Xét ΔACB co
BN,CK là đường cao
BN cắt CK tại H
=>H là trực tâm
=>AH vuông góc CB
A B C P F E N M x Q S O
Gọi S là giao điểm của 2 đường tròn (PCE) và (PBF).
Trước hết, ta thấy \(\Delta\)PCE ~ \(\Delta\)AOB => ^CPE = ^OAB. Tương tự: ^BPF = ^OAC.
Suy ra: ^CPE + ^BPF = ^OAB + ^OAC = ^BAC = 1800 - ^BPC => E,P,F thẳng hàng => ^EPS + ^FPS = 1800
Mà ^FPS + ^SNF = 1800 nên ^EPS = ^SNF => ^EMS = ^SNQ (Vì ^EPS = ^EMS)
=> Tứ giác SMQN nội tiếp. Hay S thuộc đường tròn (QMN).
Bằng các góc nội tiếp, ta có: ^BSC = ^BSP + ^CSP = ^BFP + ^CEP = ^BAC = const. Mà BC cố định
Nên S nằm trên đường tròn đối xứng với (O) và BC => Đường tròn (BCS) cố định
Ta sẽ chứng minh: Đường tròn (QMN) tiếp xúc với (BCS) cố định (tại điểm chung S).
Thật vậy, từ S vẽ tiếp tiếp Sx của đường tròn (QMN). Dễ thấy: ^MSx = ^MNS = ^PBS (Do tứ giác BPSN nội tiếp)
Xét đường tròn (PCE): ^MSC = ^MPC = ^CBP. Từ đó: MSx + ^MSC = ^PBS + ^CBP = ^CBS
Do đó: Sx cũng là tiếp tuyến của đường tròn (BCS). Cho nên (QMN) luôn tiếp xúc (BCS) cố định (đpcm).
Định lí: Mỗi đa giác đều có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.