a) Tro...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FKa) chứng minh tam giác DEF là tam giác đềub) chứng minh tam giác DIK là tam giác cânc) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=nbai 2: cho  góc...
Đọc tiếp

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK

a) chứng minh tam giác DEF là tam giác đều

b) chứng minh tam giác DIK là tam giác cân

c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n

bai 2: cho  góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)

a) chung minh tam giác HAB là tam giác cân

b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox

c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA

giải giúp mình đi mình đang cần gấp

 

1

Bài 2: 

a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có 

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOHA=ΔOHB

Suy ra: HA=HB

hay ΔHAB cân tại H

b: Xét ΔOAB có

OH là đường cao

AD là đường cao

OH cắt AD tại C

Do đó: C là trực tâm của ΔOAB

Suy ra: BC\(\perp\)Ox

c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)

Xét ΔOHA vuông tại A có 

\(\cos HOA=\dfrac{OA}{OH}\)

\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)

14 tháng 4 2017

Đáp án B

Gọi hình bình hành là ABCD

d:x+ y-1 = 0, : 3x – y+ 5= 0  .

Không làm mất tính tổng quát giả sử

 

Ta có :  I(3;3)  là tâm hình bình hành nên C(7;4)  

=> Đường thẳng ACcó pt là: x- 4y + 9= 0.

Do  => Đường thẳng BC đi qua điểm C và có vtpt  có pt là: 3x – y- 17= 0.

Khi đó :

Ta có:

4 tháng 1 2018

đây đâu phải đề toán lớp 10 đâu nhể

a,tứ giác AMDN có góc AMD=MAN=AND=90=>tứ giác là hcn

4 tháng 8 2018

Đáp án B

Phương trình chính tắc của elip có dạng:

Do một cạnh của hình chữ nhật cơ sở thuộc đường thẳng x-2 = 0  nên có a= 2.

Mặt khác độ dài đường chéo là 6 nên  a2 + b2= 62 nên b2= 36- 4= 32

=> 

Vậy (E) cần tìm là:

21 tháng 10 2022

Gọi A,B lần lượt là giao của (d) với trục Ox và Oy

\(\Leftrightarrow A\left(\dfrac{1-m}{m};0\right);B\left(0;m-1\right)\)

\(\Leftrightarrow OA=\left|\dfrac{m-1}{m}\right|;OB=\left|m-1\right|\)

=>\(OA\cdot OB=2\cdot2=4\)

=>|m-1|^2/|m|=4

=>m^2-2m+1=4|m|

TH1: m>=0

Pt sẽ là m^2-2m+1=4m

=>m^2-6m+1=0

hay \(m=3\pm2\sqrt{2}\)

TH2: m<0

Pt sẽ là m^2-2m+1=-4m

=>m^2+2m+1=0

=>m=-1

1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA\(\sim\)ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CA\cdot CE\)

NV
7 tháng 5 2021

Chắc điểm D kia là C?

\(\overrightarrow{AB}=\left(4;14\right)=2\left(2;7\right)\)

\(\Rightarrow\) Đường thẳng AB nhận \(\left(7;-2\right)\) là 1 vtpt

Phương trình AB:

\(7\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow7x-2y-12=0\)

\(\overrightarrow{CB}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) đường cao AH vuông góc BC nên nhận (1;3) là 1 vtpt

Phương trình AH:

\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)

\(\overrightarrow{AC}=\left(2;8\right)=2\left(1;4\right)\Rightarrow\) đường thẳng AC nhận (4;-1) là 1 vtpt

Phương trình AC: \(4\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow4x-y-7=0\)

Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc phân giác góc A

\(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)

\(\Rightarrow\dfrac{\left|7x-2y-12\right|}{\sqrt{7^2+\left(-2\right)^2}}=\dfrac{\left|4x-y-7\right|}{\sqrt{4^2+\left(-1\right)^2}}\)

\(\Leftrightarrow\sqrt{17}\left|7x-2y-12\right|=\sqrt{53}\left|4x-y-7\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=4\sqrt{53}x-\sqrt{53}y-7\sqrt{53}\\7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=-4\sqrt{53}x+\sqrt{53}y+7\sqrt{53}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(7\sqrt{17}-4\sqrt{53}\right)x+\left(\sqrt{53}-2\sqrt{17}\right)y-12\sqrt{17}+7\sqrt{53}=0\\\left(7\sqrt{17}+4\sqrt{53}\right)x-\left(\sqrt{53}+2\sqrt{17}\right)y-12\sqrt{17}-7\sqrt{53}=0\end{matrix}\right.\)

Đây là pt 2 phân giác trong và ngoài của góc A