K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

*Xét hàm số: y= -x3 + 2x2 – x – 7

Tập xác định: D = R

\(y'\left(x\right)=-3x^2+4x-1\)\(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )

Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).

Tập xác định: D = R{1}

\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)

Vậy hàm số nghịch biến trong từng khoảng (-,1) và (1, +)

31 tháng 3 2017

Tập xác định : D = R. y' = => y' = 0 ⇔ x=-1 hoặc x=1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (- ; -1), (1 ; +).

31 tháng 3 2017

Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).

31 tháng 3 2017

a) Tập xác định : D = R { 1 }. > 0, ∀x 1.

Hàm số đồng biến trên các khoảng : (-; 1), (1 ; +).

b) Tập xác định : D = R { 1 }. < 0, ∀x 1.

Hàm số nghịch biến trên các khoảng : (-; 1), (1 ; +).

c) Tập xác định : D = (- ; -4] ∪ [5 ; +).

∀x ∈ (- ; -4] ∪ [5 ; +).

Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (- ; -4) và đồng biến trên khoảng (5 ; +).

d) Tập xác định : D = R { -3 ; 3 }. < 0, ∀x ±3.

Hàm số nghịch biến trên các khoảng : (- ; -3), (-3 ; 3), (3 ; +).

31 tháng 3 2017

a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;

Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2

Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12

Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.

Bảng biến thiên :

Đồ thị như hình bên.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 12 2017

- Điều kiện đồng biến, nghịch biến của hàm số:

Cho hàm số y = f(x) có đạo hàm trên khoảng K.

+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.

+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.

- Xét hàm số

 

 

+ Hàm số đồng biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số nghịch biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trên Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

nghịch biến trên các khoảng Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 và (1; +∞)

- Xét hàm số Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Ta có: D = R \ {1}

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 ∀ x ∈ D.

⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).

31 tháng 3 2017

a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);

y' = 0 ⇔ x = 0, x = ±2 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);

y' = 0 ⇔ x = 0, x = ±1 .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

.

19 tháng 9 2020

bn lm dài thế chi tiết nx mn tick cho bn này nè mk hok r nên bt

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



31 tháng 3 2017

a) Vì ( hoặc ) nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

( hoặc ) nên đường thẳng y = -1 là tiệm cận ngang của đồ thị hàm số.

b) Tiệm cận đứng : x = -1 ; tiệm cận ngang : y = -1.

c) Tiệm cận đứng : ; tiệm cận ngang :

d) Tiệm cận đứng : x = 0 ; tiệm cận ngang : y = -1.