Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 2x3 + 8x2 - 8x
= 2x(x2 + 4x - 4)
= 2x(x2 + 4x + 4 - 8)
= 2x[(x + 2)2 - 8]
= \(2x\left(x+2-\sqrt{8}\right)\left(x+2+\sqrt{8}\right)\)
b) a2 - b2 + 4a + 4b
= (a - b)(a + b) + 4(a + b)
= (a + b)(a - b + 4)
c) x2 - 2x - 3
= x2 + x - 3x - 3
= x(x + 1) - 3(x + 1)
= (x + 1)(x - 3)
d) x2 - 4x - 3
= x2 - 4x + 4 - 7
= (x + 2)2 - 7
= \(\left(x+2-\sqrt{7}\right)\left(x+2+\sqrt{7}\right)\)

Bài 1: 4a2-4ab+b2-9a2b2
=(2a)2-2.2a.b+b2-(3ab)2
=(2a-b)2-(3ab)2
=(2a-b-3ab)(2a-b+3ab)
a/ (4a2-4ab+b2)-9a2b2
= (2a-b)2-(3ab)2
= (2a-b-3ab) (2a-b+3ab)

a
4x2--25=0
=> (2x)22 --52 =0
=> (2x-5)(2x+5)=0
\(\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}X=\frac{5}{2}\\X=\frac{-5\:\:. \:\:\:\:\:\:\:\:\:\:TT}{2}\end{cases}Mình\:}\)
\(4x^2=25\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\sqrt{\frac{25}{4}}\) \(=\frac{5}{2}\)
\(\left(x^3-x^2\right)^2-\left(4x^2-8x+4\right)=0\)
= \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2=0\)
=(\(\left(x^3-x^2-2x+2\right)\left(x^3-x^2+2x-2\right)=0\)
=\(\left[x^2\left(x-1\right)-2\left(x-1\right)\right]\) \(\left[x^2\left(x-1\right)+2\left(x-1\right)\right]\)=0
=\(\left(x-1\right)\left(x^2-2\right)\left(x-1\right)\left(x^2+2\right)\) = 0
= \(\left(x-1\right)\left(x^2-2\right)\left(x^2+2\right)=0\)
=\(\left(x-1\right)\left(x^4-4\right)\) = 0
=> \(x-1=0\) hoặc \(x^4-4=0\)
=> \(x=1\) hoặc \(x=\pm\sqrt{2}\)
câu 2
a)\(\left(3x^2\right)^3-\left(2x\right)^3\)
= \(\left(3x^2-2x\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
= \(x\left(3x-2\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
may be wrong , but chawsc k nhiều , chỗ nào k hiểu ib hỏi mk sai nha <3

1,
a, \(\left(2x-5\right)\cdot\left(2x+5\right)=0\)
\(x=\frac{5}{2}\)
x\(=-\frac{5}{2}\)
b \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2\)=0
(x-2x+2)(x+2x-2)=0
x=2
x=2/3
2,
a (3x^2)^3-(2x)^3
(3x^2-2x)(9x^4+6x^3+4x^2)
\(4x^2-25=0\)
\(\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
\(27x^6-8x^3=\left(3x^2\right)^3-\left(2x\right)^3=\left(3x^2-2x\right)\left[\left(3x^2\right)^2+3x^2.2x+\left(2x\right)^2\right]=x^3.\left(3x-2\right).\left(3x^2+6x+4\right)\)

1a) 4x2 - 25 = 0 => 4x2 = 25 => x2 = \(\frac{25}{4}\)= \(\left(\frac{5}{2}\right)^2\)=> x = \(\frac{5}{2}\)

\(a,4x^4-8x^3+4x^2\)
\(=4x^2\cdot\left(x^2-2x+1\right)\)
\(=4x^2\cdot\left(x-1\right)^2\)
\(b,x^2-y^2+5\cdot\left(y-x\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x+y-5\right)\)
\(c,3x^2-6xy+3y^2-12z^2\)
\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)
\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)
a/ \(a^3+4a^2+4a+3\)
\(=a^3+3a^2+a^2+3a+a+3\)
\(=\left(a^3+3a^2\right)+\left(a^2+3a\right)+\left(a+3\right)\)
\(=a^2\left(a+3\right)+a\left(a+3\right)+\left(a+3\right)\)
\(=\left(a+3\right)\left(a^2+a+1\right)\)
b/ \(x^4-4x^3+8x+3\)
\(=x^4+x^3-5x^3-5x^2+5x^2+5x+3x+3\)
\(=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(5x^2+5x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)-5x^2\left(x+1\right)+5x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x-5x^2+5x+3\right)\)
c/ \(x^4+4x^2-5\)
\(=x^4-x^3+x^3-x^2+5x^2-5x+5x-5\)
\(=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(5x^2-5x\right)+\left(5x-5\right)\)
\(=x^3\left(x-1\right)+x^2\left(x-1\right)+5x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+x^2+5x+5\right)\)
\(=\left(x-1\right)\left[x\left(x+1\right)+5\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\)