Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3) a) x(x-5)-4(x-5)=0
<=> (x-4)(x-5)=0
TH1 :x-4=0
<=.x=4
TH2 : x-5=0
<=>x=5
b) x(x-6)-7x-42=0
<=>x(x+6)-7(x+6)=0
<=>(x-7)(x+6)=0
th1;x-7=0
<=>x=7
th2; x+6=0
<=>x=-6
c)x^3-5x^2+x-5=0
<=> x(x^2+1)-5(x^2+1)=0
<=> (x-5)(x^2+1)=0
th1:x-5=0
<=>x=5
TH2 : x^2+1=0
<=> x^2=-1 ( vo li )
=> th2 ko tồn tại
nho thick nha
Bài 3
a, x(x-5)-4(x-5)=0
(x-4)(x-5)=0
=>\(\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
b,x(x+6)-7(x+6)=0
(x-7)(x+6)=0\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
c,x^2(x-5)+(x-5)=0
(x^2+1)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\Phi\\x=5\end{cases}}\)
\(\text{Tìm x:}\)
\(a.x\left(x-1\right)-3x+3x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
\(b.3x\left(x-2\right)+10-5x=0\)
\(3x^2-6x+10-5x=0\)
\(3x^2-11x+10=0\)
\(3x^2-11x=-10\)(bn xem lại đề nhé)
\(c.x^3-5x^2+x-5=0\)
\(x^3-5x^2+x=5\)
\(d.x^4-2x^3+10x^2-20x=0\)
bài 1:phân tích thành phân tử
a> x^2-6x-y^2+9
= (x-3)^2 -y^2
= (x-3 -y) (x-3+y)
b>x^2-xy-8x+8y
= x(x-y) - 8(x-y)
= (x-8) (x-y)
c>25-4x^2-4xy-y^2
= 5^2 - (2x + y)^2
= (5 - 2x -y) (5 +2x+y)
d>xy-xz-y+z
= x(y-z) - (y-z)
= (x-1) (y-z)
e>x^2-xz-yz+2xy+y^2
= (x+y)^2 - z(x+y)
= (x+y-z) (x+y)
g>x^2-4xy+4y^2-z^2-4zt-4t^2
= (x-2y)^2 - (z + 2t)^2
= (x-2y -x-2t) (x-2y + z +2t)
bài 2:tìm X bt
a>x.(x-1)-3x+3x=0
x (x-1) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0 và x=1
b>3x.(x-2)+10-5x=0
3x(x-2) - 5 (x-2)=0
(3x-5) (x-2) =0
\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)
c>x^3-5x^2+x-5=0
x^2 (x-5) + (x-5) =0
(x^2 +1)(x-5) =0
\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)
Vậy x=5
d>x^4-2x^3+10x^2-20x=0
x^3 (x-2) + 10x(x-2) =0
(x^3 + 10x) (x-2) =0
x(x^2 + 10) (x-2) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)
Vậy x=0 và x=2
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
=6x^2+3xy+4xy+2y^2
=3x(x+y)+2y(x+y)
=(3x+2y)(x+y)
b, 9x^2 - 9xy - 4y^2
=9x^2 +3xy-12xy-4y^2
=3x(x+y)-4y(x+y)
=(3x+4y)(x+y)
c, x^2 - y^2 + 10x - 6y + 16=x^2-y^2+6x-6y+4x+16=x(x+6)-y(x+6)+4(x+6)=(x-y+4)(x+6)
Bài làm
a, 6x2 + 7xy + 2y2
= 6x2 + 3xy + 4xy + 2y2
= ( 6x2 + 3xy ) + ( 4xy + 2y2 )
= 3x( 2x + y ) + 2y( 2x + y )
= ( 2x + y )( 3x + 2y )
b, 9x2 - 9xy - 4y2
= 9x2 - 12xy + 3xy - 4y2
= ( 9x2 - 12xy ) + ( 3xy - 4y2 )
= 3x( 3x - 4y ) + y ( 3x - 4y )
= ( 3x + y )( 3x - 4y )
c, x2 - y2 + 10x - 6y + 16
= x2 - y2 - 6x + 6y + 4x + 16
= x( x + 6 ) - y( x + 6 ) + 4( x + 6 )
= ( x - y + 4 )( x + 6 )
# Học tốt #
1. Ta có:
\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)
Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)
2.
a) \(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)
Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)
Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)
b) \(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)
.....................................
Rồi giải tương tự như trên
a) \(A=x^2-8x-y^2-8y\)
\(A=\left(x^2-y^2\right)-\left(8x+8y\right)\)
\(A=-8\left(x-y\right)\left(x+y\right)\)
b) \(B=x^2-6x+9-4y^2\)
\(B=\left(x-3\right)^2-\left(2y\right)^2\)
\(B=\left(x-3-2y\right)\left(x-3+2y\right)\)
c) \(C=7x-7y-ax+ay\)
\(C=7\left(x-y\right)-a\left(x-y\right)\)
\(C=\left(x-y\right)\left(7-a\right)\)
\(A=\left(x^2-8x+16\right)-\left(y^2+8y+16\right)=\left(x-4\right)^2-\left(y+4\right)^2=\left(x-4+y+4\right)\left(x-4-y-4\right)=\left(x+y\right)\left(x-y-8\right)\)
\(B=\left(x^2-6x+9\right)-4y^2=\left(x-3+2y\right)\left(x-3-2y\right)\)
\(C=7\left(x-y\right)-a\left(x-y\right)=\left(7-a\right)\left(x-y\right)\)
a) Ta có: \(\left(a-b\right)\left(a^2-c^2\right)-\left(a-c\right)\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+c\right)-\left(a-c\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(a+c-a-b\right)\)
\(=\left(a-c\right)\left(a-b\right)\left(c-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) Ta có: \(x^2-y^2+10x+8y+9\)
\(=\left(x^2+10x+25\right)-\left(y^2-8y+16\right)\)
\(=\left(x+5\right)^2-\left(y-4\right)^2\)
\(=\left(x+5-y+4\right)\left(x+5+y-4\right)\)
\(=\left(x-y+9\right)\left(x+y+1\right)\)