K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phân tích (x+y+z)3

nằm ngửa lên trời xem có bụt đi ngang ko mak hỏi :))))

1 tháng 11 2020

cấy ni thì khai triển chứ phân tích gì ? --

( x + y + z )3 = [ ( x + y ) + z ]3

= ( x + y )3 + 3( x + y )2z + 3( x + y )z2 + z3

= x3 + 3x2y + 3xy2 + y3 + 3z( x2 + 2xy + y2 ) + 3xz2 + 3yz2 + z3

= x3 + y3 + z3 + 3x2y + 3xy2 + 3zx2 + 6xyz + 3zy2 + 3xz2 + 3yz2

10 tháng 9 2016

ta có: \(\left(x+y+z\right)^3-x^3-y^3-z^3\) 

           \(=x^3+y^3+z^3+3x^2yz+3xy^2z+3xyz^2-x^3-y^3-z^3\)

             \(=3x^2yz+3xy^2z+3xyz^2=3xyz\left(x+y+z\right)\)

       

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

4 tháng 9 2019

\(\left(x-y\right)z^3+\left(y-z\right)x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)z^3-\left[\left(x-y\right)+\left(z-x\right)\right]x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)z^3-\left(x-y\right)x^3-\left(z-x\right)x^3+\left(z-x\right)y^3\)

\(=\left(x-y\right)\left(z^3-x^3\right)-\left(z-x\right)\left(x^3-y^3\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2\right)-\left(z-x\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(z-x\right)\left(z^2+zx+x^2-x^2-xy-y^2\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[\left(x^2-x^2\right)+\left(zx-xy\right)+\left(z^2-y^2\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left[x\left(z-y\right)+\left(z-y\right)\left(y+z\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left(x+y+z\right)\)

\(=-\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\)

27 tháng 6 2016

cho tau mới giải cho

16 tháng 8 2016

\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)

\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)

t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại

17 tháng 8 2016

Cảm ơn nhiều nhé =))

11 tháng 9 2016

Ta có: (x-y)^3+(y-z)^3+(z-x)^3 
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau 
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
Đến đây thì bạn đã có nhân tử chung là (z-x)

31 tháng 7 2017

Ta có: (x-y)^3+(y-z)^3+(z-x)^3 

Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau 

(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

Đến đây thì bn đã có nhân tử chung là (z-x).