Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^0=1\)
\(\left(a+b\right)^1=a+b\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
Tổng quát:
\(\left(a+b\right)^n=C_0a^n+C_1a^{n-1}b+...+C_nb^n\)
Trong đó : C0, C1, ..., Cn là các hệ số trong tam giác cân Paxcan:
(a + b)^0 1 (a + b)^1 1 1 (a + b)^2 1 2 1 (a + b)^3 1 3 3 1 (a + b)^4 1 4 6 4 1 (a + b)^5 1 5 10 10 5 1 (a + b)^6 1 6 15 20 15 6 1 ........... ...........
Chúc bn học tốt <3
Ta có:
\(1^4+\frac{1}{4}=\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)=\frac{1}{2}.\left(2+\frac{1}{2}\right)\)
\(2^4+\frac{1}{4}=\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)=\left(2+\frac{1}{2}\right).\left(6+\frac{1}{2}\right)\)
\(3^4+\frac{1}{4}=\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)=\left(6+\frac{1}{2}\right).\left(12+\frac{1}{2}\right)\)
\(4^4+\frac{1}{4}=\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)=\left(12+\frac{1}{2}\right).\left(20+\frac{1}{2}\right)\)
...
\(19^4+\frac{1}{4}=\left(19^2-19+\frac{1}{2}\right)\left(19^2+19+\frac{1}{2}\right)=\left(342+\frac{1}{2}\right).\left(380+\frac{1}{2}\right)\)
\(20^4+\frac{1}{4}=\left(20^2-20+\frac{1}{2}\right)\left(20^2+20+\frac{1}{2}\right)=\left(380+\frac{1}{2}\right).\left(420+\frac{1}{2}\right)\)
=> \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)
\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(342+\frac{1}{2}\right).\left(380+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(380+\frac{1}{2}\right).\left(420+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}}{420+\frac{1}{2}}=\frac{1}{841}\)
mk lm tiếp câu b
BÀI LÀM
b) \(P\left(x\right)=x^5-x\)
\(=x\left(x^4-1\right)\)
\(=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=\left(x-1\right)\left(x+1\right)x\left(x^2+1\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x^2-4\right)+5\left(x-1\right)x\left(x+1\right)\)
\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)
Ta thấy \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)là tích của 5 số nguyên liên tiếp (do x nguyên) nên chia hết cho 5
\(5\left(x-1\right)x\left(x+1\right)\) chia hết cho 5
Vậy \(P\left(x\right)⋮5\)nếu x nguyên
a , \(P\left(x\right)-Q\left(x\right)=x^5-x-\left(x^2-4\right)\left(x^2-1\right)x\)
\(=x^5-x-\left(x^5-5x^3+4x\right)=x^5-x-x^5+5x^3-4x\)
\(=5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
Bài 2:
a)A= \(6x^2\)\(-11x+3\)
<=>A=\(6x^2\)\(-2x-9x+3\)
<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)
=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)
<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)
=>A=(3x-1)(2x+3)
1, a, = (3x+15-x+7 )( 3x+15+x-7)
= ( 2x +22)( 4x+8)
=8( x+11)( x+2)
b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)
=(x-9y)(x-y)
2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)
b,
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
a)ta co: 125x^3+y^6=(5x)^3+(y^2)^3=(5x+y^2)(5x-5xy^2+y^2) b)ta co 5xy^2-10xyz+5xz^2=5x(y^2-2yz+z^2)=5x(y-z)^2 (may cau sau gan giong ban tu lam nha)
b) \(5xy^2-10xyz+5xz^2\)
\(=5xy^2-5xyz-5xyz+5xz^2\)
\(=5xy\left(y-z\right)-5xz\left(y-z\right)\)
\(=\left(y-z\right)\left(5xy-5xz\right)\)
\(=5x\left(y-z\right)\left(y-z\right)\)
\(=5x\left(y-z\right)^2\)
\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)\(b^5\)
Sorry, mk nhầm
\(\left(a+b\right)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+\)\(5ab^4+b^5\)