\(\frac{3x^2-12x+12}{x^4-8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

\(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x\left(x^2+2x+4\right)}\)(điều kiện: \(x\ne\left\{0;2\right\}\)

15 tháng 11 2018

ĐK: \(x\ne\left\{0;2\right\}\)

Ta có: \(3x^2-12x+12\)\(=3\left(x^2-4x+4\right)=3\left(x-2\right)^2\) (1)

\(x^4-8x\)\(=\left(x-2\right)\left(x^3+2x^2+4x\right)\) (chỗ này mình làm hơi tắt xíu,bạn tự giải ra chi tiết nha)

\(=x\left(x-2\right)\left(x^2+2x+4\right)\) (2)

Từ (1) và (2),ta có: \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)\(=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

2 tháng 11 2017

a)\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x^3-2^3\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

12 tháng 11 2015

3{x-2}2/x{x-2}{x2+2x+4}=3{x-2}/x2+2x+4=-3/x+2 

nho tick minh nha

8 tháng 8 2017

Không ai trả lời buồn quá .

\(\frac{3x^2-12x+12}{x^4-8x}\)

\(=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)

\(=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+2^2\right)}\)

\(=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

22 tháng 12 2018

1/

x2 - 3x - 4 

\(x^2-3x+\frac{9}{4}-\frac{9}{4}-4\)

\(=\left(x^2-3x+\frac{9}{4}\right)-\frac{25}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{5}{2}\right)^2\)

\(=\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)\)

\(=\left(x-4\right)\left(x+1\right)\)

22 tháng 12 2018

Bài 1 :

\(x^2-3x-4\)

\(=x^2+x-4x-4\)

\(=x\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x+1\right)\left(x-4\right)\)

5 tháng 8 2017

1) \(\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3xy\left(x-y\right)-12\left(x-y\right)\)

\(=\left(3xy-12\right)\left(x-y\right)\)

2) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

5 tháng 8 2017

Ta có : 3x2 - 3y2 - 12x + 12y 

= (3x2 - 3y2) - (12x - 12y)

= 3(x2 - y2) - 12(x - y)

= 3(x - y)(x + y) - 4.3.(x - y)

= 3(x - y)(x + y - 4)

20 tháng 8 2018

\(x^4+6x^3+12x^2+8x\)

\(=x\left(x^3+6x^2+12x+8\right)\)

\(=x\left(x+2\right)^3\)

20 tháng 8 2018

8x + 12x2 + 6x3 + x4

= x4 + 6x3 + 12x2 + 8x

= x(x3 + 6x2 + 12x + 8)

= x ( x + 2 ) 3

31 tháng 12 2018

\(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}=\frac{\left(x^4-x^2-2\right)+\left(x^3-2x\right)}{\left(x^4-x^2-2\right)+\left(2x^3-4x\right)}\)

\(=\frac{\left(x^2-2\right)\left(x^2+1\right)+x\left(x^2-2\right)}{\left(x^2-2\right)\left(x^2+1\right)+2x\left(x^2-2\right)}=\frac{\left(x^2-2\right)\left(x^2+x+1\right)}{\left(x^2-2\right)\left(x^2+2x+1\right)}\)

\(=\frac{x^2+x+1}{\left(x+1\right)^2}\)

31 tháng 12 2018

\(F\left(x\right)=\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)

\(=\frac{\left(x^4+x^3+x^2\right)-2x^2-2x-2}{\left(x^4+2x^3+x^2\right)-\left(2x^2+4x+2\right)}\)

\(=\frac{x^2\left(x^2+x+1\right)-2\left(x^2+x+1\right)}{x^2\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)}=\frac{x^2+x+1}{x^2+2x+1}\)