K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

a) \(=\left(5x\right)^2-3^2\) \(=\left(5x-3\right)\left(5x+3\right)\)

b) \(=8^2-\left(x-7\right)^2\) \(=\left(8-x+7\right)\left(8+x-7\right)\) \(=\left(15-x\right)\left(x+1\right)\)

c) \(=1-100a^2b^2\) \(=1-\left(10ab\right)^2\) \(=\left(1-10ab\right)\left(1+10ab\right)\)

d) Mình sửa đề chút nhé! Đề như trên thì không phân tích thành nhân tử được :)

\(x^2-6x+8\)

 \(=x^2-2x-4x+8\) \(=x\left(x-2\right)-4\left(x-2\right)\) \(=\left(x-2\right)\left(x-4\right)\)

24 tháng 7 2019

a, 3x^2 + 13x + 10  

= 3x^2 + 3x + 10x + 10 

= 3x(x + 1) + 10(x + 1)

= (3x + 10)(x + 1)

b, x^2 - 10x + 21

= x^2 - 3x - 7x + 21

= x(x - 3) - 7(x - 3)

= (x - 7)(x - 3)

c, 6x^2 - 5x + 1

= 6x^2 - 3x - 2x + 1

= 3x(2x - 1) - (2x - 1)

= (3x - 1)(2x - 1)

24 tháng 7 2019

Bạn đăng 1 lần nhiều bài như vậy làm người khác nản lắm đấy =) đơn giản bài rất dài mà mik cx ko chắc là bản thân mik có đc k hay ko nên phải nản vậy thôi :)

1a)\(3x^2+13x+10=3x^2+3x+10x+10\)

\(3x\left(x+1\right)+10\left(x+1\right)=\left(3x+10\right)\left(x+1\right)\)

b)\(x^2-10x+21=x^2-3x-7x+21\)

\(=x\left(x-3\right)-7\left(x-3\right)=\left(x-7\right)\left(x-3\right)\)

c)\(6x^2-5x+1=6x^2-3x-2x+1\)

\(=3x\left(2x-1\right)-\left(2x-1\right)=\left(3x-1\right)\left(2x-1\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

4 tháng 8 2015

h) (x+1)(x+4)(x+2)(x+3) - 24

= (x2+4x+x+4)(x2+3x+2x+6)-24

=(x2+5x+5-1)(x2+5x+5+1)-24

=(x2+5x+5)-12 -24

=(x2+5x+5)-25

=(x2+5x+5)-52

=(x2+5x+5-5)(x2+5x+5+5)

=(x2+5x)(x2+5x+10)

 

i) 4(x2+5x+10x+50)(x2+6x+12x+72)-3x2

=4[x(x+5)+10(x+5)].[x(x+6)+12(x+6)]- 3x2

=4(x+10)(x+5)(x+12)(x+6)-3x2

=4(x+10)(x+6)(x+12)(x+5)-3x2

=4(x2+6x+10x+60)(x2+5x+12x+60)-3x2

=4(x2+16x+60)(x2+17x+60)-3x2

Đặt (x2+16x+60) = a

Ta có: 4a(a+x)-3x2

=4a2+4ax -3x2

=(2a)2 + 2.2a.x +x2 -4x2

= [ (2a) +x]2 - (2x)2
= [ (2a) +x -2x].[(2a) + x +2x)]

=[ (2a) -x].[(2a) + 3x)]
sau đó ta thế a = (x2+16x+60) rồi rút gọn là xong ^^

3 tháng 8 2015

Đã khó lại còn dài 

14 tháng 1 2018
Khang yêu nghiêm ♥
26 tháng 6 2016

a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)

b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)

c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)

d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.

30 tháng 6 2017

toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!

30 tháng 6 2017

a, x2-6x +9 = (x-3)2

b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2

c, 9x2 -12x +4 = (3x-2)2

d, 25x2 -10x +1= (5x -1)2

e, x4-4x2+4 = (x2 -2)2

f, x2 +8x +16 = (x+4)2